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Abstract 
 
Here we study the discrete lot-sizing problem with an initial stock variable and an associated 
variable upper bound constraint. This problem is of interest in its own right, and is also a natural 
relaxation of the constant capacity lot-sizing problem with upper bounds and fixed charges on the 
stock variables. We show that the convex hull of solutions of the discrete lot-sizing problem is 
obtained as the intersection of two simpler sets, one involving just 0-1 variables and the second a 
mixing set with a variable upper bound constraint. For these two sets we derive both inequality 
descriptions and polynomial-size extended formulations of their respective convex hulls. Finally 
we carry out some limited computational tests on single-item constant capacity lot-sizing 
problems with upper bounds and fixed charges on the stock variables in which we use the 
extended formulations derived above to strengthen the initial mixed integer programming 
formulations. 
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1 Introduction

Much recent research has been concerned with the development of convex
hull descriptions, exact cutting plane algorithms and tight and compact ex-
tended formulations for mixed integer sets including simple 0-1 sets, mixing
sets and polynomially solvable single item lot-sizing problems. Here we pur-
sue this work deriving formulations for the convex hull of solutions of

(i) a 0-1 set generalizing cardinality knapsack constraints and (1, k)-con-
figurations,

(ii) a mixing set in which the single continuous variable satisfies a variable
upper bound constraint, and

(iii) the single item discrete lot-sizing problem with constant capacities with
a variable upper bound constraint on the initial stock variable. Here
the convex hull turns out to be the intersection of the convex hulls of
the sets (i) and (ii).

For the convex hull of each of these sets, we provide both a linear-inequality
description in the original space of variables and a polynomial-size (com-
pact) linear-inequality description using additional variables (extended for-
mulation).

Apart from an interest in the structure of the valid inequalities for these
sets with a view to further generalizations, the motivation for this work is to
solve lot-sizing problems with fixed costs on the stocks, for which all three
sets studied above are relaxations. Computationally we show that relax-
ation (ii) combined with the default cutting planes generated by a standard
commercial solver allow us to solve very rapidly a variety of single item
lot-sizing problems with fixed costs on the stocks. In particular uncapaci-
tated instances that were solved in [1] using two classes of specialized cut-
ting planes and specialized separation algorithms in several minutes can be
solved in a few seconds, and constant capacity instances can also be tackled
effectively.

Uncapacitated lot-sizing problems with upper bounds on stocks have
been tackled by numerous authors, in particular valid inequalities have been
proposed by Atamtürk and Küçükyavuz [1], Pochet and Wolsey [9] and
Wolsey [12]. However problems with fixed costs on stocks have received
little attention until recently, see Ortega and Van Vyve [11] for the problem
with unlimited upper bounds on the stock, and more recently Atamtürk and
Küçükyavuz [1] for arbitrary bounds.

1



Mixing sets, defined by Gúnlúk and Pochet [6], were studied as a natural
relaxation of constant capacity lot-sizing problems. Generalizations, moti-
vated by variants of lot-sizing and also by node covering problems, have
been tackled in several papers including among others [10, 4, 3].

Optimizing over most 0-1 sets is typically NP-hard. One exception is
the (1, k)-configuration studied by Padberg [8].

The rest of the paper is organized as follows. In §§2–3 we analyze the
single-item discrete lot-sizing model with a variable upper bound on the
initial stock. We model this problem as a mixed-integer program and we
describe the convex hull of the feasible region by means of linear inequal-
ities, both in the original space and via an extended formulation. This
target is achieved by first studying two relaxations of the feasible region in
§2. In §4 we study the single-item constant-capacity lot-sizing problem with
variable upper bounds on the stock. As in the previous section, the prob-
lem is formulated as a mixed-integer program. We then use the result for
the discrete lot-sizing model to construct relaxations for the feasible region
and we demonstrate the strength of the relaxations by carrying out some
computational experiments. We conclude in §5 with some final remarks.

2 Discrete lot-sizing with variable upper bound on
the initial stock

In this section we study the single-item discrete lot-sizing problem with a
variable upper bound on the initial stock. The problem is to plan production
and inventory levels for a horizon of n periods so that all demands are
satisfied and the total cost is minimized. In each period the production is
either 0 or at full capacity C, say C = 1 wlog. For every period t = 1, . . . , n,
the demand dt, the production cost pt and the per unit holding cost ht

are given. In this model the initial inventory level is not given, but it is a
variable to be determined. A fixed charge c is incurred if one chooses to have
a positive initial inventory level, and this level cannot exceed a given upper
bound u. A mixed-integer formulation of this problem is the following:

min cw + h0s0 +
∑n

t=1(ptyt + htst) (1)
subject to st−1 + yt = dt + st, 1 ≤ t ≤ n, (2)

0 ≤ s0 ≤ uw, w ∈ {0, 1}, (3)
st ≥ 0, yt ∈ {0, 1}, 1 ≤ t ≤ n. (4)
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In the above formulation, variable s0 represents the variable initial inventory
level, whereas st for 1 ≤ t ≤ n is the stock at the end of period t. Variable w
is equal to 1 if the initial inventory level is strictly positive, while the binary
variable yt (1 ≤ t ≤ n) indicates whether production takes place in period
t. Wlog 0 ≤ dt ≤ 1 for 1 ≤ t ≤ n.

After eliminating variables st for 1 ≤ t ≤ n from the above formulation,
the feasible region (2)–(4) becomes:

s0 +
∑t

i=1 yi ≥
∑t

i=1 di, 1 ≤ t ≤ n,

0 ≤ s0 ≤ uw, w ∈ {0, 1},
yt ∈ {0, 1}, 1 ≤ t ≤ n.

If we now define s = s0, zt =
∑t

i=1 yi for 1 ≤ t ≤ n, z0 = 0 and bt =
∑t

i=1 di

for 1 ≤ t ≤ n, the feasible region can be rewritten as follows:

s + zt ≥ bt, 1 ≤ t ≤ n, (5)
0 ≤ s ≤ uw, w ∈ {0, 1}, (6)
0 ≤ zt − zt−1 ≤ 1, zt ∈ Z, 1 ≤ t ≤ n. (7)

In the rest of this section we describe the convex hull of solutions sat-
isfying (5)–(7). To do so, we first study two relaxations in §§2.1–2.2. The
convex hull of (5)–(7) is then derived in §3.

2.1 A mixing relaxation

To construct a first relaxation of (5)–(7), we drop the constraints zt−zt−1 ≤
1 for 1 ≤ t ≤ n and obtain the following mixed-integer set, which we call
M :

s + zt ≥ bt, 1 ≤ t ≤ n,

0 ≤ s ≤ uw, w ∈ {0, 1},
zt ≥ 0, zt ∈ Z, 1 ≤ t ≤ n.

The set M can be regarded as a variant of the mixing set, a basic mixed-
integer set first studied by Günlük and Pochet [6]. The only differences are
the 0-1 variable w and the inequalities s ≤ uw and zt ≥ 0 for 1 ≤ t ≤ n.

Günlük and Pochet [6] gave a linear-inequality description of the convex
hull of the mixing set in its original space of variable, whereas Miller and
Wolsey [7] provided a compact extended formulation. In the following two
propositions we provide similar descriptions for the convex hull of M .
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Throughout the paper, for 1 ≤ t ≤ n we denote by ft be the fractional
part of bt, i.e. ft = bt − bbtc. Furthermore, we define

f ′t =

{
ft if ft > 0,
1 if ft = 0.

Theorem 1 The convex hull of M is described by the linear inequalities
0 ≤ s ≤ uw, 0 ≤ w ≤ 1, zt ≥ 0 for 1 ≤ t ≤ n, the inequalities

zt ≥ dbte (1− w) + dbt − ue+ w for 1 ≤ t ≤ n, (8)

and the following two groups of inequalities:

s +
∑k

i=1(f
′
ti − f ′ti+1

)(zti − dbtie) ≥ 0, (9)

s +
∑k

i=1(f
′
ti − f ′ti+1

)(zti − dbtie) + (1− f ′t1)(ztk − dbtke+ w) ≥ 0, (10)

where k ≥ 1 and t1, . . . , tk is a sequence of indices such that f ′t1 > · · · > f ′tk
(f ′tk+1

= 0).

Proof. We first show that all the above inequalities are valid for M (and
thus for conv(M)).

• The validity of inequalities 0 ≤ s ≤ uw, 0 ≤ w ≤ 1 and zt ≥ 0 for
1 ≤ t ≤ n is obvious.

• If w = 0, inequalities s + zt ≥ bt, 0 ≤ s ≤ uw and the integrality of
zt imply zt ≥ dbte. If w = 1, the same conditions along with the non-
negativity of zt imply zt ≥ dbt − ue+. This shows that inequalities (8)
are valid for M .

• Inequalities (9) are valid for the mixing set (see [6]), thus also for M .

• We now consider inequalities (10). If w = 1, (10) reduces to one of
the inequalities that are valid for the mixing set (see [6]). If w = 0,
(10) can be obtained as a combination of the inequality zt ≥ dbte
(which holds if w = 0) and the inequality (9) corresponding to the
same sequence of indices t1, . . . , tk.

Therefore all the inequalities listed above are valid for conv(M). Let
P be the polyhedron defined by these inequalities. Since P is contained in
the linear relaxation of M (the inequality s + zt ≥ bt is implied by w ≤ 1
and (10) for k = 1 and t1 = t), to conclude we only have to prove that the
extreme points of P have integer w- and z-components.
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We first show that w is integer in every extreme point of P . Suppose
that this is not true, i.e. there exists an extreme point (s̄, z̄, w̄) ∈ P with 0 <

w̄ < 1. Below we show that the point (ŝ, ẑ, ŵ) =
(

s̄
w̄ , z̄t−(1−w̄)dbte

w̄ , 1
)

belongs
to P . Since (s̄, z̄, w̄) = w̄(ŝ, ẑ, ŵ) + (1 − w̄)(0, dbte , 0) and (0, dbte , 0) ∈ P ,
we have that (s̄, z̄, ȳ) is not an extreme point of P .

• It is readily checked that 0 ≤ ŝ ≤ uŵ and 0 ≤ ŵ ≤ 1.

• For 1 ≤ t ≤ n, ẑt = z̄t−(1−w̄)dbte
w̄ ≥ dbt − ue+ ≥ 0, where the first

inequality holds because (s̄, z̄, w̄) satisfies (8).

• For 1 ≤ t ≤ n, (ŝ, ẑ, ŵ) satisfies (8) if and only if z̄t−(1−w̄)dbte
w̄ ≥

dbt − ue+, which holds as (s̄, z̄, w̄) satisfies (8).

• It can be easily verified that (ŝ, ẑ, ŵ) satisfies (9) (resp. (10)) if and
only if (s̄, z̄, w̄) satisfies (9) (resp. (10)).

Therefore w ∈ {0, 1} in all the extreme points of P . To conclude, we
show that z is integral in all the extreme points of P . Let (s̄, z̄, w̄) be an
extreme point of P . We consider the two cases w̄ = 0 and w̄ = 1.

1. If w̄ = 0, then s̄ = 0 and z̄ is an extreme point of the polyhedron
obtained by intersecting P with the hyperplanes w = 0 and s = 0,
namely

zt ≥ 0, zt ≥ dbte , 1 ≤ t ≤ n, (11)∑k
i=1(f

′
ti − f ′ti+1

)(zti − dbtie) ≥ 0, (12)
∑k

i=1(f
′
ti − f ′ti+1

)(zti − dbtie) + (1− f ′t1)(ztk − dbtke) ≥ 0, (13)

for all sequences of indices t1, . . . , tk as described above. It is readily
checked that inequalities (12)–(13) are implied by (11), thus they do
not play any role in the above linear system. Then, since z̄ is a vertex
of (11)–(13), we have that z̄t = min{0, dbte} for 1 ≤ t ≤ n, thus z̄ is
an integral vector.

2. If w̄ = 1, then (s̄, z̄) is an extreme point of the polyhedron P1 obtained
by intersecting P with the hyperplane w = 1. A result appearing in
[5] shows that the P1 is the convex hull of a mixing set with an upper
bound constraint s ≤ u, thus z̄ is an integral vector.

¤
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We now present a compact extended formulation for conv(M) that is
derived from the extended formulation that Miller and Wolsey [7] gave for
the mixing set.

Theorem 2 An extended formulation for conv(M) is given by the following
linear system:

s = µ +
∑n

`=0 f`δ`,
∑n

`=0 δ` = 1, (14)
µ +

∑
`:f`≥ft

δ` + zt ≥ bbtc+ 1, 1 ≤ t ≤ n, (15)

zt ≥ dbte (1− w) + dbt − ue+ w, 1 ≤ t ≤ n, (16)
s ≤ uw, w +

∑
`:f`=0 δ` ≥ 1, (17)

0 ≤ w ≤ 1, zt ≥ 0, 1 ≤ t ≤ n, (18)
µ ≥ 0, δ` ≥ 0, 0 ≤ ` ≤ n, (19)

where f0 = 0.

Proof. First we show that every point in M can be extended to a vector
satisfying the above linear system. Let (s̄, z̄, w̄) be a point in M . Con-
straints (14), (15) and (19) form an extended formulation of the mixing set
(see [7]), thus there exists an integral vector (µ̄, δ̄) such that (s̄, z̄, w̄, µ̄, δ̄)
satisfies these constraints. All other inequalities, except w +

∑
`:f`=0 δ` ≥ 1,

are part of the description of conv(M) given in Theorem 1. To see that
w̄ +

∑
`:f`=0 δ̄` ≥ 1, observe that if w̄ = 0, then s̄ = 0; together with equa-

tions (14) and the integrality of (µ̄, δ̄), this implies that δ̄` = 1 for some `
for which f` = 0.

Now we show that all the inequalities listed in Theorem 1 are implied
by (14)–(19). In fact, the only nontrivial part is proving that inequalities
(9)–(10) are implied by (14)–(19). Constraints (9) are valid for the mixing
set (see [6]), so they are implied by inequalities (14), (15) and (19) (which
form an extended formulation of the mixing set, as recalled above). To see
that (10) is implied by (14)–(19), let t1, . . . , tk be a sequence of indices such
that f ′t1 > · · · > f ′tk and set f ′tk+1

= 0. If f ′t1 = 1, then (10) coincides with
(9). Therefore we assume f ′t1 < 1. Note that this implies that f ′ti = fti

and dbtie = bbtic + 1 for 1 ≤ i ≤ k, and ft1 > 0. The following chain of
equations and inequalities concludes the proof (see below for a justification
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of the steps):

s +
∑k

i=1(f
′
ti − f ′ti+1

)(zti − dbtie) + (1− f ′t1)(ztk − dbtke+ w)

= s +
∑k

i=1(fti − fti+1)(zti − bbtic − 1) + (1− ft1)(ztk − bbtkc − 1 + w)

≥ µ +
∑n

`=0 f`δ` −
∑k

i=1(fti − fti+1)(µ +
∑

`:f`≥fti
δ`)

−(1− ft1)(µ +
∑

`:f`≥ft1
δ` − w)

≥ µ− ft1µ− (1− ft1)(µ +
∑

`:f`≥ft1
δ` − w)

≥ −(1− ft1)(1−
∑

`:f`=0 δ` − w) ≥ 0.

The first inequality follows from the first equation (14) and from (15), the
second one is just a manipulation of the terms (recall that ft1 > · · · > ftk),
the third inequality holds because of the second equation (14), and finally
the last inequality follows from the second condition (17). ¤

We conclude this subsection with a brief discussion of the separation
problem for the inequalities listed in Theorem 1. Given a point (s̄, z̄, w̄),
it can be checked in O(n) time whether it violates any of the inequalities
0 ≤ s ≤ uw, 0 ≤ w ≤ 1, zt ≥ 0 or (8). Therefore we focus on inequalities
(9)–(10).

Proposition 3 Given a point (s̄, z̄, w̄), let t1, . . . , tk be a sequence of indices
with f ′t1 > · · · > f ′tk such that:

(a) dbtke − z̄tk ≥ · · · ≥ dbt1e − z̄t1 ≥ (β − w̄)+, where β = dbtke − z̄tk ;

(b) dbte− z̄t ≤ dbtie− z̄ti for all t such that f ′ti+1
< f ′t < f ′ti, 1 ≤ i ≤ k (with

f ′tk+1
= 0);

(c) dbte − z̄t ≤ (β − w̄)+ for all t such that f ′t > f ′t1.

Then, if β ≤ w̄, (9) is a most violated inequality, whiles if β ≥ w̄, (10) is a
most violated inequality.

Proof. It can be verified that this choice of the sequence t1 < · · · < tk
minimizes the left-hand side of (9)–(10). We also remark that the above
statement is analogous to that presented in [9] for the mixing set, with the
only exception that w̄ is replaced by 1 in [9]. ¤

A sequence of indices as in the above proposition can be found in time
O(n log n): first reorder the indices so that f ′1 > · · · > f ′n, then find the
index t for which dbte − z̄t is maximum (this will be index tk), then the
index t < tk such that dbte − z̄t is maximum, and so forth.
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2.2 A knapsack relaxation

A second relaxation of (5)–(7) is given by the following pure integer set,
that we call K:

uw + zt ≥ bt, 1 ≤ t ≤ n, (20)
0 ≤ zt − zt−1 ≤ 1, 1 ≤ t ≤ n, (21)
w ∈ {0, 1}, zt ∈ Z, 1 ≤ t ≤ n. (22)

The validity of (20) follows from (5) and from the inequality s ≤ uw.
In the following, we find an extended formulation for the convex hull of

K and then we project it onto the original space of variables, thus obtaining
a linear-inequality description of conv(K) in the space of the (z, w) variables.
This will be used in §3, in which we will derive linear-inequality descriptions
for the convex hull of (5)–(7).

2.2.1 Extended formulation of the knapsack relaxation

Define K0 = {(z, w) ∈ K : w = 0} and K1 = {(z, w) ∈ K : w = 1}. Because
K = K0 ∪K1, we first find linear-inequality descriptions for conv(K0) and
conv(K1), and then derive an extended formulation for conv(K) using Balas’
result on the convex hull of the union of polyhedra [2].

With w fixed at 0 or 1, the constraint matrix of inequalities (20)–(21) is
totally unimodular. This implies that conv(K0) is described by the inequal-
ities

zt ≥ dbte , 1 ≤ t ≤ n,

w = 0, 0 ≤ zt − zt−1 ≤ 1, 1 ≤ t ≤ n,

and conv(K1) is described by the inequalities

zt ≥ dbt − ue , 1 ≤ t ≤ n,

w = 1, 0 ≤ zt − zt−1 ≤ 1, 1 ≤ t ≤ n.

Then, by Balas’ result [2], as both sets are bounded, an extended formu-
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lation for conv(K) is given by the following inequalities:

0 ≤ λ ≤ 1, w = w′ + w′′,
zt = z′t + z′′t , 1 ≤ t ≤ n,

z′t ≥ dbte (1− λ), 1 ≤ t ≤ n,

z′′t ≥ dbt − ueλ, 1 ≤ t ≤ n,

w′ = 0, w′′ = λ,

0 ≤ z′t − z′t−1 ≤ 1− λ, 1 ≤ t ≤ n,

0 ≤ z′′t − z′′t−1 ≤ λ, 1 ≤ t ≤ n.

Since w′ = 0, w′′ = λ and w = w′ + w′′ = λ, we can eliminate variables
w′, w′′, λ and rewrite the above linear system as follows (the dual variables
in parentheses to the left of the inequalities will be used later):

0 ≤ w ≤ 1,

(τt) z′t + z′′t = zt, 1 ≤ t ≤ n,

(ρ′t) z′t ≥ dbte (1− w), 1 ≤ t ≤ n,

(ρ′′t ) z′′t ≥ dbt − uew, 1 ≤ t ≤ n,

(u′t) z′t − z′t−1 ≥ 0, 1 ≤ t ≤ n,

(v′t) −z′t + z′t−1 ≥ −(1− w), 1 ≤ t ≤ n,

(u′′t ) z′′t − z′′t−1 ≥ 0, 1 ≤ t ≤ n.

(v′′t ) −z′′t + z′′t−1 ≥ −w, 1 ≤ t ≤ n.

2.2.2 Convex hull of the knapsack relaxation in the original space

In order to obtain a linear-inequality description of the polyhedron conv(K)
in its original space of variables, we project away the additional variables
from the extended formulation derived above.

To this purpose, we associate dual multipliers to the inequalities as indi-
cated to the left of the above system (there is no need to assign multipliers
to the constraints 0 ≤ w ≤ 1, as the only variable appearing here is an
original variable). Apart from the constraints 0 ≤ w ≤ 1, all facet-defining
inequalities for conv(K) are of the form

n∑

t=1

τtzt ≥
n∑

t=1

(
(ρ′t dbte − v′t)(1− w) + (ρ′′t dbt − ue − v′′t )w

)
, (23)
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where (τ, ρ′, ρ′′, u′, v′, u′′, v′′) is an extreme ray of the cone

τt = ρ′t + u′t − u′t+1 − v′t + v′t+1, 1 ≤ t ≤ n, (24)
τt = ρ′′t + u′′t − u′′t+1 − v′′t + v′′t+1, 1 ≤ t ≤ n, (25)

ρ′t, ρ′′t , u′t, v′t, u′′t , v′′t ≥ 0, 1 ≤ t ≤ n, (26)

with u′n+1 = v′n+1 = u′′n+1 = v′′n+1 = 0. After elimination of variables
τ1, . . . , τn, cone (24)–(26) reads:

ρ′t + u′t − u′t+1 − v′t + v′t+1 = ρ′′t + u′′t − u′′t+1 − v′′t + v′′t+1, 1 ≤ t ≤ n, (27)
ρ′t, ρ′′t , u′t, v′t, u′′t , v′′t ≥ 0, 1 ≤ t ≤ n, (28)

while inequality (23) becomes

n∑

t=1

(ρ′t + u′t − u′t+1 − v′t + v′t+1)zt ≥
n∑

t=1

(
(ρ′t dbte − v′t)(1− w) + (ρ′′t dbt − ue − v′′t )w

)
,

which can be rewritten as follows:

n∑

t=1

ρ′tzt +
n∑

t=1

(u′t − v′t)(zt − zt−1) ≥
n∑

t=1

(
(ρ′t dbte − v′t)(1− w) + (ρ′′t dbt − ue − v′′t )w

)
. (29)

The linear system (27)–(28) defines the set of feasible flows in the network
N depicted in Figure 1. Since there is a one-to-one correspondence between
variables appearing in constraints (27)–(28) and arcs in N , we will use ρ′t to
denote both the variable and the corresponding arc. The network includes
a dummy node (which has not been drawn) that is the tail of arcs u′1, v′′1
and ρ′t for 1 ≤ t ≤ n, and the head of arcs u′′1, v′1 and ρ′′t for 1 ≤ t ≤ n.

By standard results on network flow problems, the extreme rays of the
cone defined by (27)–(28) are 0, 1 vectors (up to multiplication by a positive
scalar) whose supports correspond to the directed cycles in N (note that
cycles are allowed to contain the dummy node). Therefore we analyze the
directed cycles in N .

In the following we write x for the vector of variables (ρ′, ρ′′, u′, v′, u′′, v′′).
Sometimes we will identify vector x with the corresponding flow. Further-
more, we denote by lhs(x) (resp. rhs(x)) the left-hand side (resp. right-hand

10
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Figure 1: The network N corresponding to linear system (27)–(28) with
n = 5.

side) of the inequality (29) corresponding to the vector x, and by I(x) the
whole inequality.

In the following lemma we give some necessary conditions for a directed
cycle x̄ in N to generate a non-dominated inequality I(x̄). The words “we
can assume that” in the lemma below mean that if I(x̄) is a non-redundant
inequality, then either x̄ satisfies the conditions described by the lemma, or
there is another feasible flow satisfying the conditions and generating the
same inequality. Recall that b1 ≥ 0 and 0 ≤ bt − bt−1 ≤ 1 for 2 ≤ t ≤ n, as
these relations will be used in the proof below. Furthermore, since our linear-
inequality description of conv(K) will include the constraints 0 ≤ w ≤ 1,
we are allowed to use these inequalities when proving that some inequality
I(x̄) is redundant.

Lemma 4 If x̄ defines a directed cycle in N and inequality I(x̄) is non-
redundant in the description of conv(K), then we can assume that:

(a) ū′1 = 0;

(b) ρ̄′tū′t+1 = 0 for 1 ≤ t ≤ n− 1;

(c) ρ̄′tv̄′t = 0 for 2 ≤ t ≤ n;

(d) ρ̄′′t ū′′t+1 = 0 for 1 ≤ t ≤ n− 1;

(e) ρ̄′′t v̄′′t = 0 for 2 ≤ t ≤ n.

Proof. (a) Assume ū′1 = 1. Then ρ̄′1 = 0, otherwise x̄ would not define
a directed cycle. We construct a vector x̂ by setting û′1 = 0, ρ̂′1 = 1 and
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all other components equal to the corresponding entries of x̄. Note that x̂
defines a directed cycle with lhs(x̂) = lhs(x̄) and rhs(x̂)− rhs(x̄) = db1e (1−
w) ≥ 0. Thus I(x̄) is implied by I(x̂) and inequality w ≤ 1.

(b) Assume ρ̄′t = ū′t+1 = 1. Then ρ̄′t+1 = 0. Define x̂ by setting ρ̂′t =
û′t+1 = 0, ρ̂′t+1 = 1 and all other components equal to the corresponding
entries of x̄. Vector x̂ defines a directed cycle with lhs(x̂) = lhs(x̄) and
rhs(x̂)− rhs(x̄) = (dbt+1e − dbte)(1− w) ≥ 0.

(c) Assume ρ̄′t = v̄′t = 1. Then ρ̄′t−1 = 0. Define x̂ by setting ρ̂′t = v̂′t = 0,
ρ̂′t−1 = 1 and all other components equal to the corresponding entries of x̄.
Vector x̂ defines a directed cycle with lhs(x̂) = lhs(x̄) and rhs(x̂)− rhs(x̄) =
(dbt−1e − dbte+ 1)(1− w) ≥ 0.

(d) Assume ρ̄′′t = ū′′t+1 = 1. Then ρ̄′′t+1 = 0. Define x̂ by setting ρ̂′′t =
û′′t+1 = 0, ρ̂′′t+1 = 1 and all other components equal to the corresponding
entries of x̄. Vector x̂ defines a directed cycle with lhs(x̂) = lhs(x̄) and
rhs(x̂)− rhs(x̄) = (dbt+1e − dbte)w ≥ 0.

(e) Assume ρ̄′′t = v̄′′t = 1. Then ρ̄′′t−1 = 0. Define x̂ by setting ρ̂′′t =
v′′t = 0, ρ̂′′t−1 = 1 and all other components equal to the corresponding
entries of x̄. Vector x̂ defines a directed cycle with lhs(x̂) = lhs(x̄) and
rhs(x̂)− rhs(x̄) = (dbt−1 − ue − dbt − ue+ 1)w ≥ 0. ¤

We now examine all the directed cycles x̄ in N that satisfy conditions
(a)–(e) of Lemma 4.

1. There are four types of directed cycles that do not contain the dummy
node (non-specified entries are equal to zero):

(i) ū′t = v̄′t = 1 for some 1 ≤ t ≤ n;

(ii) ū′t = ū′′t = 1 for some 1 ≤ t ≤ n;

(iii) v̄′′t = v̄′t = 1 for some 1 ≤ t ≤ n;

(iv) v̄′′t = ū′′t = 1 for some 1 ≤ t ≤ n.

The corresponding inequalities (29) are respectively 0 ≥ −(1 − w),
zt − zt−1 ≥ 0, −zt + zt−1 ≥ −1 and 0 ≥ −w. So we obtain the
inequalities 0 ≤ w ≤ 1 and 0 ≤ zt − zt−1 ≤ 1 for 1 ≤ t ≤ n, which are
part of the original description of K.

2. The directed cycle defined by ρ̄′t = ρ̄′′t = 1 for some 1 ≤ t ≤ n (other
entries are equal to zero) generates the inequality

zt ≥ dbte (1− w) + dbt − uew. (30)
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3. We now consider any directed cycle containing arc ρ′j for some 1 ≤
j ≤ n, going through nodes j, j − 1, . . . , 1 and terminating with either
arc u′′1 or arc v′1. Note that for 2 ≤ t ≤ j, there are two arcs going
from node t to node t − 1: arcs u′′t and v′t. Also observe that by
Lemma 4 (c), arc v′j cannot be part of the directed cycle. We can then
define a sequence of indices 0 = t0 < t1 < t2 < · · · < tk = j such that
the directed cycle contains arcs of type u′′t between nodes tk and tk−1,
then arcs of type v′t between nodes tk−1 and tk−2, then again arcs of
type u′′t , and so forth.

More formally, given any sequence 0 = t0 < t1 < t2 < · · · < tk ≤ n
(with k ≥ 1), we consider the directed cycle defined by setting to 1
the following components of x̄:

• ρ̄′tk ;

• ū′′t for tk−i−1 < t ≤ tk−i, 0 ≤ i ≤ k − 1, i even;

• v̄′t for tk−i−1 < t ≤ tk−i, 0 ≤ i ≤ k − 1, i odd.

The corresponding inequality I(x̄) is

ztk − ztk−1
+ ztk−2

− · · ·+ (−1)k+1zt1 ≥( dbtke − tk−1 + tk−2 − · · ·+ (−1)k+1t1
)
(1− w). (31)

4. We now consider any directed cycle containing arc ρ′j for some 1 ≤ j ≤
n, going through nodes j, j − 1, . . . , h (with h ≤ j) and terminating
with arc ρ′′h. By Lemma 4 (c)–(d), neither arc v′j nor arc u′′h+1 belongs
to the directed cycle. Then the directed cycle is associated with a
sequence of indices h = t1 < t2 < · · · < tk = j with k odd and is
defined by setting to 1 the following components of x̄:

• ρ̄′tk and ρ̄′′t1 ;

• ū′′t for tk−i−1 < t ≤ tk−i, 0 ≤ i < k − 1, i even;

• v̄′t for tk−i−1 < t ≤ tk−i, 0 ≤ i < k − 1, i odd.

We show that inequality I(x̄) is not needed in the description of
conv(K).

Assume first that dbtk − ue − dbt1 − ue − tk−1 + tk−2 − · · · + t1 ≥ 0.
Define a feasible flow x̂ by setting ρ̂′tk = ρ̂′′tk = 1, v̂′t = v̂′′t = 1 for
tk−i−1 < t ≤ tk−i, 0 ≤ i < k − 1, i odd, and all other entries equal
to zero. Since lhs(x̂) = lhs(x̄) and rhs(x̂) − rhs(x̄) = (dbtk − ue −
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dbt1 − ue − tk−1 + tk−2 − · · · + t1)w ≥ 0, inequality I(x̄) is implied
by I(x̂) and inequality w ≥ 0. It remains to observe that the flow
defined by x̂ decomposes into cycles that have already been examined
in points 1–2 above.

Now assume that dbtk − ue−dbt1 − ue−tk−1+tk−2−· · ·+t1 < 0. Note
that this implies dbtke−dbt1e−tk−1+tk−2−· · ·+t1 ≤ 0. Define a feasible
flow x̂ by setting ρ̂′t1 = ρ̂′′t1 = 1, û′t = û′′t = 1 for tk−i−1 < t ≤ tk−i,
0 ≤ i < k−1, i even, and all other entries equal to zero. Since lhs(x̂) =
lhs(x̄) and rhs(x̂)−rhs(x̄) = −(dbtke−dbt1e−tk−1+tk−2−· · ·+t1)(1−w),
inequality I(x̄) is implied by I(x̂) and inequality w ≤ 1. As above, x̂
decomposes into directed cycles that have already been analyzed.

5. We now consider any directed cycle containing arc ρ′j for some 1 ≤ j ≤
n, going through nodes j, j + 1, . . . , h (with h ≥ j) and terminating
with arc ρ′′h. By conditions (a) and (e) of Lemma 4, neither arc u′j+1

nor arc v′′h belongs to the directed cycle. Then the directed cycle is
associated with a sequence of indices j = t1 < t2 < · · · < tk = h with
k odd and is defined by setting to 1 the following components of x̄:

• ρ̄′t1 and ρ̄′′tk ;

• v̄′′t for ti < t ≤ ti+1, 1 ≤ i ≤ k − 1, i odd;

• ū′t for ti < t ≤ ti+1, 1 ≤ i ≤ k − 1, i even.

We show that inequality I(x̄) is not needed in the description of
conv(K). Since the approach is almost identical to that used in point 4,
we only state how to define x̂.

If dbtke − dbt1e − tk−1 + tk−2 − · · · + t1 ≥ 0, we set ρ̂′tk = ρ̂′′tk = 1,
v̂′t = v̂′′t = 1 for ti < t ≤ ti+1, 1 ≤ i ≤ k − 1, i odd, and all other
entries equal to zero. Otherwise, we set ρ̂′t1 = ρ̂′′t1 = 1, û′t = û′′t = 1 for
ti < t ≤ ti+1, 1 ≤ i ≤ k− 1, i even, and all other entries equal to zero.

6. It only remains to consider directed cycles containing arc v′′1 , going
through nodes 1, . . . , h for some 1 ≤ h ≤ n and terminating with arc
ρ′′h. By Lemma 4 (e), arc v′′h is not part of the directed cycle. Thus
there is a sequence of indices 0 = t0 < t1 < t2 < · · · < tk = h with k
even such that the directed cycle is defined by setting to 1 the following
components of x̄:

• ρ̄′′tk ;

• v̄′′t for ti < t ≤ ti+1, 0 ≤ i ≤ k − 1, i even;
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• ū′t for ti < t ≤ ti+1, 0 ≤ i ≤ k − 1, i odd.

We show that inequality I(x̄) is not needed in the description of
conv(K). As above, we only describe x̂.

If dbtke − tk−1 + tk−2 − · · ·+ t0 ≥ 0, we set ρ̂′tk = ρ̂′′tk = 1, v̂′t = v̂′′t = 1
for ti < t ≤ ti+1, 1 ≤ i ≤ k − 1, i odd, and all other entries equal to
zero. Otherwise, we set û′t = û′′t = 1 for ti < t ≤ ti+1, 1 ≤ i ≤ k − 1, i
even, and all other entries equal to zero.

The above analysis proves the following result.

Theorem 5 The convex hull of K is described by the linear inequalities
0 ≤ w ≤ 1, 0 ≤ zt − zt−1 ≤ 1 for 1 ≤ t ≤ n, inequalities (30) for 1 ≤ t ≤ n
and inequalities (31) for all sequences of indices 1 ≤ t1 < · · · < tk ≤ n (with
k ≥ 1).

Remark 6 Inequality (31) for k = 1 reads zt ≥ dbte (1−w) (where t = t1).
Then, if bt ≤ u, inequality (30) is redundant, whereas if bt > u, inequality
zt ≥ dbte (1 − w) is redundant. This implies that for every t we can gather
the two inequalities into the single constraint zt ≥ dbte (1−w)+dbt − ue+ w.

Remark 7 If b1 > 0 (i.e. db1e = 1), any inequality of type (31) with k ≥ 3
odd is redundant. To see this, take any sequence 1 ≤ t1 < t2 < · · · < tk ≤ n
with k ≥ 3 odd. If t1 > 1 then then the inequality (31) associated with
this sequence can be obtained by adding the inequality z1 ≥ 1 − w to the
inequality (31) generated by the sequence 1, t1, t2, . . . , tk. Otherwise, if t1 =
1, the inequality can be obtained by adding the inequality z1 ≥ 1− w to the
inequality (31) generated by the sequence t2, . . . , tk.

To conclude this subsection, we discuss separation of inequalities (31).

Proposition 8 Given a point (z̄, w̄), a most violated inequality (31) can be
found in time O(n).

Proof. We first observe that the family of inequalities (31) can be described
as follows: for every subset S ⊆ {1, . . . , n− 1} and every index ` such that
(maxS) < ` ≤ n, we have the valid inequality

(z` − db`e (1− w)) +
∑

t∈S

(−zt + zt−1 + (1− w)) ≥ 0, (32)

15



where z0 = 0. Then, for fixed ` ∈ {1, . . . , n}, a most violated inequality (32)
is given by S = {t : t < `, −z̄t + z̄t−1 + (1− w̄) < 0}.

An algorithm to find a most violated inequality (32) is then the following.
First we construct the set S′ = {t : −z̄t+ z̄t−1+(1−w̄) < 0} and we compute
the values

σ` =
∑

t∈S′, t<`

(−z̄t + z̄t−1 + (1− w̄)) for 1 ≤ ` ≤ n− 1.

Then we find the index ` for which (z̄`−db`e (1− w̄))+σ` is minimum. This
index ` and the corresponding set S = {t ∈ S′ : t < `} give the a most
violated inequality (32). Note that the values σ` for 1 ≤ ` ≤ n − 1 can be
computed in time O(n), because

σ` = σ`−1 − (−z̄t + z̄t−1 + (1− w̄))− for 2 ≤ ` ≤ n− 1.

Therefore the overall running time of the algorithm is O(n). ¤

3 The convex hull of the discrete lot-sizing set (5)–
(7)

Recall that conditions (5)–(7) describe the feasible region of the single-item
discrete lot-sizing problem with a variable upper bound on the initial stock.
We denote this mixed-integer set by X. In this section we first find a compact
extended formulation for conv(X) and then we project it onto the space of
the (s, z, w) variables to obtain a linear-inequality description of conv(X) in
its original space.

3.1 Extended formulation

Defining X0 = {(s, z, w) ∈ X : w = 0} and X1 = {(s, z, w) ∈ X : w = 1},
one has X = X0∪X1. As for the set K in §2.2.1, we first find linear-inequality
descriptions for conv(X0) and conv(X1) and then derive an extended for-
mulation for conv(X) using Balas’ result [2].

If w = 0, then also s = 0. Since, with s and w fixed at 0, the constraint
matrix of the linear inequalities appearing in (5)–(7) is totally unimodular,
the polyhedron conv(X0) is described by the inequalities

zt ≥ dbte , 1 ≤ t ≤ n,

s = 0, w = 0,

0 ≤ zt − zt−1 ≤ 1, 1 ≤ t ≤ n.
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We now turn to X1. This set is a mixing set with an upper bound on the
continuous variable s. Though a linear-inequality description of its convex
hull in the original space can be given explicitly [5], here we describe it
using an extended formulation, as this will simplify the derivation of the
inequalities defining conv(X). The extended formulation that we present
can be derived from the results of [3]. Up to a change of variables, it is
essentially the formulation given by Miller and Wolsey [7] for the mixing
set, with some slight modifications needed to model the upper bound on s.

Define b0 = 0, bn+1 = u and let g1 > · · · > gm > gm+1 = 0 be the m + 1
distinct fractional parts of the numbers b0, b1, . . . , bn+1. Set g0 = 1. For
0 ≤ t ≤ n + 1, define ϕ(t) as the unique index such that f ′t = gϕ(t). Note
that 0 ≤ ϕ(t) ≤ m for 0 ≤ t ≤ n + 1. Finally, set

π =

{
ϕ(n + 1)− 1 if ϕ(n + 1) > 0 (i.e., u /∈ Z),
m if ϕ(n + 1) = 0 (i.e., u ∈ Z).

Note the relation
gπ+1 = u− buc , (33)

which will be used later.
From the results of [3] (modulo some minor modifications), an extended

formulation for conv(X1) is the following:

s =
∑m

`=0(g` − g`+1)µ`,

µ` − µ`−1 ≥ 0, 1 ≤ ` ≤ m,

µm − µ0 ≤ 1,

µϕ(t) + zt ≥ dbte , 1 ≤ t ≤ n,

µ0 ≥ 0, µπ ≤ buc ,

zt ≥ dbt − ue , 1 ≤ t ≤ n,

w = 1, 0 ≤ zt − zt−1 ≤ 1, 1 ≤ t ≤ n,

As in §2.2.1, if one writes Balas’ extended formulation for conv(X) =
conv(X0 ∪X1), several variables can be eliminated. The resulting formula-
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tion is:

0 ≤ w ≤ 1,

(τt) zt = z′t + z′′t , 1 ≤ t ≤ n,

(ρ′t) z′t ≥ dbte (1− w), 1 ≤ t ≤ n,

(ρ′′t ) z′′t ≥ dbt − uew, 1 ≤ t ≤ n,

(σ)
∑m

`=0(g` − g`+1)µ` = s,

(r0) µ0 − µm ≥ −w,

(r`) µ` − µ`−1 ≥ 0, 1 ≤ ` ≤ m,

(γ0) µ0 ≥ 0,

(γt) µϕ(t) + z′′t ≥ dbtew, 1 ≤ t ≤ n,

(γn+1) −µπ ≥ −bucw,

(u′t) z′t − z′t−1 ≥ 0, 1 ≤ t ≤ n,

(v′t) −z′t + z′t−1 ≥ −(1− w), 1 ≤ t ≤ n,

(u′′t ) z′′t − z′′t−1 ≥ 0, 1 ≤ t ≤ n.

(v′′t ) −z′′t + z′′t−1 ≥ −w, 1 ≤ t ≤ n.

Since m ≤ n + 2, we have obtained a compact extended formulation for
conv(X) that uses O(n) variables and constraints.

3.2 Convex hull in the original space

We now project the set defined by the above linear system onto the space
of the (s, z, w) variables. The approach is similar to that used for the poly-
hedron conv(K) in §2.2.2, and in fact the results found there will be used
here.

For 0 ≤ ` ≤ m + 1, define T` = {t : ϕ(t) = `}. Apart from the constraint
0 ≤ w ≤ 1, all facet-defining inequalities for conv(X) are of the form

σs +
n∑

t=1

τtzt ≥
n∑

t=1

[
(ρ′t dbte − v′t)(1− w) + (ρ′′t dbt − ue+ γt dbte − v′′t )w

]

− r0w − γn+1 bucw, (34)
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where (τ, ρ′, ρ′′, σ, r, γ, u′, v′, u′′, v′′) is an extreme ray of the cone

τt = ρ′t + u′t − u′t+1 − v′t + v′t+1, 1 ≤ t ≤ n, (35)
τt = ρ′′t + γt + u′′t − u′′t+1 − v′′t + v′′t+1, 1 ≤ t ≤ n, (36)

r` − r`+1 +
∑

t∈T`
γt − (g` − g`+1)σ = 0, 0 ≤ ` ≤ m, ` 6= π, (37)

r` − r`+1 +
∑

t∈T`
γt − γn+1 − (g` − g`+1)σ = 0, ` = π, (38)

ρ′t, ρ′′t , u′t, v′t, u′′t , v′′t , r` ≥ 0, 1 ≤ t ≤ n, 0 ≤ ` ≤ m + 1, (39)
γt ≥ 0, 0 ≤ t ≤ n + 1, (40)

with u′n+1 = v′n+1 = u′′n+1 = v′′n+1 = rm+1 = 0. After elimination of variables
τ1, . . . , τn, cone (35)–(40) takes the form:

ρ′t + u′t − u′t+1 − v′t + v′t+1 = ρ′′t + γt + u′′t − u′′t+1− v′′t + v′′t+1, 1 ≤ t ≤ n,(41)
r` − r`+1 +

∑
t∈T`

γt = (g` − g`+1)σ, 0 ≤ ` ≤ m, ` 6= π, (42)
r` − r`+1 +

∑
t∈T`

γt − γn+1 = (g` − g`+1)σ, ` = π, (43)
ρ′t, ρ′′t , u′t, v′t, u′′t , v′′t , r` ≥ 0, 1 ≤ t ≤ n, 0 ≤ ` ≤ m + 1, (44)

γt ≥ 0, 0 ≤ t ≤ n + 1, (45)

while the left-hand side of inequality (34) becomes

σs +
n∑

t=1

(ρ′t + u′t − u′t+1 − v′t + v′t+1)zt.

After manipulating the above expression, inequality (34) can be rewritten
as follows:

σs +
n∑

t=1

ρ′tzt +
n∑

t=1

(u′t − v′t)(zt − zt−1) ≥
n∑

t=1

[
(ρ′t dbte − v′t)(1− w) + (ρ′′t dbt − ue+ γt dbte − v′′t )w

]

− r0w − γn+1 bucw. (46)

Note that for fixed σ̄ ∈ R, the linear system (41)–(45) defines the set of
feasible flows in the network N (σ̄) depicted in Figure 2 (with a dummy
node that has not been drawn explicitly), where the nodes on the bottom
row (ν0, . . . , νm) have a requirement of (g` − g`+1)σ̄ for 0 ≤ ` ≤ m. We
remark that for every node ν` with ` /∈ {0, π + 1}, there is at least one arc
γt entering that node, whereas this is not necessarily true for nodes ν0 and
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Figure 2: The network N (σ̄) corresponding to a linear system of the type
(41)–(45) with n = 5 and m = 3. Here ϕ(1) = 2, ϕ(2) = 0 (i.e. b2 ∈ Z),
ϕ(3) = 3, ϕ(4) = 1, ϕ(5) = 3 and π = 2 (i.e. ϕ(6) = 3).
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νπ+1. More specifically, arc γt enters node ν0 if and only if bt ∈ Z, while it
enters node νπ+1 if and only if u /∈ Z and bt and u have the same fractional
part.

We denote by x the vector of variables (ρ′, ρ′′, σ, r, γ, u′, v′, u′′, v′′). As in
§2.2.2, we denote by lhs(x) (resp. rhs(x)) the left-hand side (resp. right-hand
side) of the inequality (46) corresponding to the vector x, and by I(x) the
whole inequality.

Since (41)–(45) is a cone and we are interested in its extreme rays, it
suffices to study the three cases σ̄ = 0, σ̄ = −1 and σ̄ = 1.

We start by considering the case σ̄ = 0. The following lemma shows that
in this case every non-redundant inequality (46) is one of the inequalities
listed in Theorem 5.

Lemma 9 Let x̄ be an extreme ray of cone (41)–(45) with σ̄ = 0. If I(x̄)
is non-redundant in the description of conv(X), then it is valid for K.

Proof. If σ̄ = 0, all node requirements in N (σ̄) are equal to 0. Then
(up to multiplication by a positive scalar) x̄ is a 0, 1 vector that defines
a directed cycle in N (σ̄). Note that if one removes nodes ν0, . . . , νm, the
resulting network is precisely that of §2.2.2 (Figure 1), and since σ̄ = 0,
inequality (46) reduces to (29). Thus we can assume that at least one of the
arcs incident with some node ν` (0 ≤ ` ≤ m) is part of the directed cycle,
as otherwise we would find one of the inequalities listed in Theorem 5.

Assume first that γ̄n+1 = 0. Since γn+1 is the only arc leaving the set
of nodes {ν0, . . . , νm} and because we are assuming that at least one of the
arcs incident with some node ν` (0 ≤ ` ≤ m) is part of the directed cycle,
x̄ must satisfy r̄` = 1 for 0 ≤ ` ≤ m and all other components are equal to
zero. The corresponding inequality is 0 ≥ −w, i.e. w ≥ 0.

Now assume that γ̄n+1 = 1. We claim that if I(x̄) is non-redundant,
then wlog γ̄t = 0 for 1 ≤ t ≤ n. To prove this, we distinguish two cases.

(i) Suppose that γ̄t = 1 for some 1 ≤ t ≤ n such that ϕ(t) > π. In
reference to Figure 2, this means that the head of arc γt is to the right
of the tail of arc γn+1. Since x̄ defines a directed cycle in N (σ̄), then
ρ̄′′t = 0 and r̄` = 1 for ` ∈ L := {ϕ(t) + 1, . . . ,m} ∪ {0, . . . , π}. Define
a directed cycle x̂ by setting γ̂t = γ̂n+1 = 0, r̂` = 0 for ` ∈ L, ρ̂′′t = 1
and all other components equal to the corresponding entries of x̂. Since
lhs(x̂) = lhs(x̄) and rhs(x̂)−rhs(x̄) = (dbt − ue−(dbte−buc−1))w ≥ 0,
inequality I(x̄) is redundant.

(ii) Suppose that γ̄t = 1 for some 1 ≤ t ≤ n such that ϕ(t) ≤ π, so
the head of arc γt is now to the left of (or coincides with) the tail of
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arc γn+1. Condition ϕ(t) ≤ π means that the fractional part of bt is
either larger than that of u or equal to zero (see the definitions of ϕ(t)
and π). In both cases, dbt − ue = dbte − buc. Now the same proof
as above applies, except that in this case L = {ϕ(t) + 1, . . . , π} and
rhs(x̂)− rhs(x̄) = (dbt − ue − (dbte − buc))w = 0.

Therefore, γ̄t = 0 for 1 ≤ t ≤ n if γ̄n+1 = 1. It follows that the only possible
directed cycle with γ̄n+1 = 1 is the one defined by γ̄0 = γ̄n+1 = 1 and r̄` = 1
for 1 ≤ ` ≤ π (all other components are equal to zero). The corresponding
inequality is 0 ≥ −(buc+ 1)w, i.e. w ≥ 0. ¤

We now consider the case σ̄ = −1.

Lemma 10 If x̄ is an extreme ray of cone (41)–(45) with σ̄ = −1, then
I(x̄) is the inequality s ≤ uw.

Proof. If σ̄ = −1, the requirements of nodes ν0, . . . , νm are all negative.
In other words, we can think of an inflow entering each of these nodes. In
this case x̄ defines an acyclic flow in the network. Since there is a positive
inflow in the set of nodes ν0, . . . , νm and since γn+1 is the only arc leaving
this set of nodes, then γ̄n+1 > 0. Then the absence of directed cycles in the
support of x̄ implies that the only other variables that can have a nonzero
value are the r`’s. Since the total inflow of nodes ν0, . . . , νm is equal to 1,
we see that γ̄n+1 = 1 and r̄0 =

∑m
`=π+1(g` − g`+1) = gπ+1 = u− buc, where

the last equality follows from (33). Inequality (46) then reads −s ≥ −uw,
i.e. s ≤ uw. ¤

We now analyze the case σ̄ = 1. In this case the requirements of nodes
ν0, . . . , νm are all positive and we can think of an outflow leaving each of
these nodes. Similarly to the above case, an extreme ray x̄ of cone (41)–(45)
with σ̄ = 1 defines an acyclic flow in N (σ̄).

Lemma 11 If x̄ is an extreme ray of cone (41)–(45) with σ̄ = 1, then ρ̄′′t = 0
for 1 ≤ t ≤ n and ū′′1 = v̄′1 = γ̄n+1 = 0.

Proof. Since the total outflow of the network is strictly positive, there must
be at least one arc that has the dummy node as tail and carries a positive
flow. Then, since x̄ defines an acyclic flow, none of the arcs having the
dummy node as head can carry a positive flow. The conclusion follows. ¤

The next lemma is a key result for finding a linear-inequality description
of conv(M). Since the proof technique is similar to that used in §2.2.2, but
there are more technicalities, we postpone the proof to the appendix.
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Figure 3: The reduced network corresponding to that of Figure 2. Thick
arrows represent node requirements.

Lemma 12 Let x̄ be an extreme ray of cone (41)–(45) with σ̄ = 1, and
suppose that I(x̄) is non-redundant in the description of conv(X). Then we
can assume that γ̄t = ρ̄′t for 1 ≤ t ≤ n.

By Lemmas 11 and 12, we can assume that ū′t = ū′′t = v̄′t = v̄′′t = ρ̄′′t = 0
for 1 ≤ t ≤ n. Furthermore, for each t = 1, . . . , n, arcs ρ′t and γt can
be replaced with a single arc. Then the network can be reduced to that
depicted in Figure 3 (recall that γ̄n+1 = 0 by Lemma 11), and inequality (46)
simplifies as follows:

s +
n∑

t=1

γt(zt − dbte) + r0w ≥ 0. (47)

To conclude the derivation of the inequalities defining conv(X), we have
to find the acyclic flows in this reduced network. There are two types of
acyclic flows, depending on the value of variable γ0.

1. Let x̄ be an acyclic flow in the reduced network with γ̄0 > 0. Let
γ̄t0 , . . . , γ̄tk (k ≥ 0) be those components of vector γ̄ that have positive
value, with ϕ(t0) ≥ · · · ≥ ϕ(tk). Since the flow is acyclic, its support
cannot contain two distinct arcs γt, γt′ entering the same node, i.e. it
is not possible that ϕ(t) = ϕ(t′). Thus ϕ(t0) > · · · > ϕ(tk). Also
note that t0 = 0. Now it can be checked that γ̄ti = gϕ(ti) − gϕ(ti+1) =
f ′ti − f ′ti+1

for 0 ≤ i ≤ k, where we set gϕ(tk+1) = f ′tk+1
= 0. Moreover,

r̄0 = 0. The corresponding inequality (47) is

s +
k∑

i=1

(f ′ti − f ′ti+1
)(zti − dbtie) ≥ 0. (48)
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If k = 1, this is precisely inequality (9), whereas if k = 0 the inequality
reads s ≥ 0.

2. Let x̄ be an acyclic flow in the reduced network with γ̄0 = 0. Let
γ̄t1 , . . . , γ̄tk (k ≥ 0) be those components of vector γ̄ that have positive
value, with ϕ(t1) ≥ · · · ≥ ϕ(tk). As above, one sees that in ϕ(t1) >
· · · > ϕ(tk). It can be checked that γ̄ti = gϕ(ti) − gϕ(ti+1) = f ′ti − f ′ti+1

for 0 ≤ i ≤ k − 1, while γ̄tk = gϕ(tk) + 1 − gϕ(t1) = f ′tk + 1 − f ′t1 .
Moreover, r̄0 = 1− gϕ(t1) = 1− f ′t1 . The corresponding inequality (47)
is (again, f ′tk+1

= 0)

s +
k∑

i=1

(f ′ti − f ′ti+1
)(zti − dbtie) + (1− f ′t1)(ztk − dbtke+ w) ≥ 0. (49)

This is precisely inequality (10).

We can now state the main result of this section.

Theorem 13 conv(X) = conv(M) ∩ conv(K).

Proof. It suffices to observe that every facet-defining inequality for conv(X)
is valid for conv(M) or conv(K). ¤

4 Constant-capacity lot-sizing with stock upper
bounds and fixed charges: Computation

Here we consider the constant-capacity lot-sizing problem with stock upper
bounds and fixed charges LS − CC − SV UB:

min
∑n

t=0(htst + ctwt) +
∑n

t=1(ptxt + qtyt) (50)
subject to st−1 + xt = dt + st, 1 ≤ t ≤ n, (51)

0 ≤ xt ≤ Cyt, yt ∈ {0, 1}, 1 ≤ t ≤ n, (52)
0 ≤ st ≤ utwt, wt ∈ {0, 1}, 0 ≤ t ≤ n. (53)

In the above formulation, xt is the amount produced in period t, st is the
stock available at the end of period t, and yt and wt are binary variables
used to model the fixed charges on production and stock respectively. The
data of the problem is as follows: pt and ht are the per unit production
and storage costs respectively, qt and ct are the fixed charges on production
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and stock respectively; finally, there are upper bounds ut on the stock and
a constant capacity C bounding the production level.

For the uncapacitated case, i.e. when C ≥ ∑n
t=1 dt, Atamtürk and

Küçükyavuz [1] have solved a variety of randomly generated instances us-
ing valid inequalities and polynomial-time separation algorithms. Here we
report briefly on computational experiments on instances generated in the
same way both for uncapacitated and the capacitated versions of the prob-
lem. All computations are performed using Xpress-MP (release 2007B) on
a machine with 1.80 GHz Intel Core 2 Duo processor and 2 GB of RAM.

We use the fact that for each k = 1, . . . , n, the discrete lot-sizing set Xk

sk−1 + C
∑t

i=k yi ≥
∑t

i=k di, k ≤ t ≤ n,

0 ≤ sk−1 ≤ uk−1wk−1,

yt ∈ {0, 1}, k ≤ t ≤ n,

studied in the previous section, is a relaxation of (51)–(53). As shown
there, the set Xk admits itself two relaxations: a mixing relaxation Mk and
a knapsack relaxation Kk.

In Table 1 we report on some computational experience on uncapacitated
instances. In order to compare our results with previous experiments, we
generate the data as in Table 4 of [1]: demands, production costs and stock
upper bounds are randomly generated integers in the following ranges: dt ∈
[0, 30], pt ∈ [4, 24], ut ∈ [30, 30(c + 1)], where c is a parameter satisfying
c ∈ {2, 5, 10, 20}. Furthermore, in all periods ht = 1, qt = 10 and ft = f ∈
{1000, 2000, 5000}. The number of periods n is 180.

For each choice of the parameters f and c, we generated four instances.
We first ran the solver (with its default settings) using the initial formulation
(50)–(53) with a time limit of five minutes. In the left part of Table 1 we
report the ratio of the best integer solution found to the optimal solution
(in percentage), the ratio of the best lower bound to the optimal solution,
and the relative gap between best solution and best bound (all these values
are averages over the four instances). We remark that none of the instances
was solved to optimality using the initial formulation. We then added the
extended formulation of conv(Mk) given in Theorem 2 for k = 1, . . . , n.
However, to avoid an excessive increase in the size of the formulation, for
each k the set Mk was truncated to the first 15 periods following period k
(the value 15 was chosen after some preliminary tests). Using these extended
formulations, all the instances were solved to optimality in a few seconds,
as reported in the right part of the table. The average time needed to solve
the same instances in [1] was over 400 seconds.
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Initial formulation Mk

f c best sol. best bd gap time
1000 2 106.1 83.5 21.4 2

5 106.1 82.7 22.0 2
10 106.2 83.8 21.0 1
20 105.6 81.0 23.3 2

2000 2 108.3 75.7 30.0 3
5 108.4 73.5 32.2 2

10 109.5 73.9 32.5 1
20 110.2 71.2 35.4 2

5000 2 109.6 62.2 43.2 1
5 110.6 57.0 48.5 1

10 110.2 57.0 48.3 2
20 111.2 54.8 50.7 1

Table 1: Uncapacitated instances.

We also tried solved the same instances using the extended formulations
of both conv(Mk) and conv(Kk), which together give an extended formu-
lation of conv(Xk). However this results in an increase in the size of the
formulation that affects negatively the overall performance of the solver.

In Table 2 we report our results on capacitated instances. The data is
exactly as in the uncapacitated instances described above, except that the
number of periods is 120 and there is a capacity of C = 50. As above,
first we ran the solver for five minutes using only the initial formulation
(50)–(53) (no instance was solved to optimality), and then we added the
extended formulations of the sets conv(Mk) for k = 1, . . . , n. In this case
each set Mk was truncated to the first 20 periods following period k. Even
though the performance was not as good as in the uncapacitated case, most
of the instances could be solved to optimality within the time limit of five
minutes (in the last column we report the number of instances not solved
within the time limit). Furthermore, the relative gap for the unsolved in-
stances is smaller than that obtained by running the solver using the initial
formulation.
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Initial formulation Mk

f c best sol. best bd gap time gap unslv
1000 2 100.2 99.6 0.7 11 0.0 0

5 100.6 99.0 1.6 66 0.0 0
10 100.9 98.7 2.1 29 0.0 0
20 100.6 98.8 1.7 147 0.0 1

2000 2 101.6 98.5 3.0 27 0.0 0
5 101.9 97.8 4.0 144 0.2 1

10 102.2 97.7 4.3 177 0.0 0
20 102.6 97.6 4.9 186 0.3 2

5000 2 102.1 97.6 4.4 52 0.0 0
5 102.8 96.9 5.7 300 0.8 4

10 103.0 95.8 7.0 300 2.2 4
20 103.1 96.3 6.6 300 2.3 4

Table 2: Capacitated instances.

5 Concluding remarks

As pointed out above, the set (51)–(53) of solutions of the constant-capacity
lot-sizing problem with stock variable upper bound and fixed charge LS −
CC−SV UB is a subset of

⋂n
k=0 Xk, which is known as the Wagner-Whitin

relaxation. Based on the structures of several other lot-sizing variants, it
was an initial conjecture that conv

(⋂n
k=0 Xk

)
=

⋂n
k=0 conv(Xk). However

this is not the case, so finding a tight compact extended formulation for
conv

(⋂n
k=0 Xk

)
that is small enough to be computationally effective is still

an open question. For the set (51)–(53) it follows from the description of the
problem LS−CC−SUB in Wolsey [12] that the problem LS−CC−SV UB
is in P. However it is not clear whether the corresponding O(n3) × O(n3)
extended formulation can be extended to include the stock variable upper
bound constraint, and in any case this formulation is in general too large to
be practically useful.

Finally, as recalled above, Atamtürk and Küçükyavuz [1] have given two
classes of valid inequalities for the uncapacitated version of the problem.
It would be interesting to understand whether similar inequalities can be
derived that exploit the capacity bound on production.
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A Proof of Lemma 12

Here we prove Lemma 12. To do so, we need two preliminary results.

Lemma 14 Let x̄ be an extreme ray of cone (41)–(45) with σ̄ = 1, and
suppose that I(x̄) is non-redundant in the description of conv(X). Then we
can assume that:

(a) ū′1 = 0;

(b) ρ̄′tū′t+1 = 0 for 1 ≤ t ≤ n− 1;

(c) ρ̄′tv̄′t = 0 for 2 ≤ t ≤ n.

Proof. The proof is an adaptation of that of Lemma 4 (a)–(c). To show that
(a) holds, assume ε := ū′1 > 0. Then ρ̄′1 = 0, otherwise x̄ would not define an
acyclic flow. We construct a vector x̂ by setting û′1 = 0, ρ̂′1 = ε and all other
components equal to the corresponding entries of x̄. Note that x̂ defines an
acyclic flow with lhs(x̂) = lhs(x̄) and rhs(x̂) − rhs(x̄) = db1e (1 − w) ≥ 0.
Thus I(x̄) is implied by I(x̂) and inequality w ≤ 1. The proofs of (b)–(c)
can be obtained by a similar adaptation of the proof of Lemma 4. ¤

Lemma 15 Let x̄ be an extreme ray of cone (41)–(45) with σ̄ = 1, and
suppose that I(x̄) is non-redundant in the description of conv(X). Then we
can assume that:

(a) γ̄tv̄
′′
t = 0 for 2 ≤ t ≤ n− 1;

(b) γ̄tū
′′
t+1 = 0 for 1 ≤ t ≤ n− 1.

Proof. (a) Assume that both γ̄t and v̄′′t are positive for some 2 ≤ t ≤ n.
Define ε = min{γ̄t, v̄

′′
t } and let L be the set of indices ` ∈ {0, . . . , m} such

that arc r` belongs to the unique directed path from node ϕ(t− 1) to node
ϕ(t). We define a vector x̂ by setting γ̂t = γ̄t−ε, v̂′′t = v̄′′t −ε, γ̂t−1 = γ̄t−1+ε,
r̂` = r̄` + ε for ` ∈ L, and all other entries equal to the corresponding
components of x̄. Note that x̂ defines a feasible flow in the network, and
lhs(x̂) = lhs(x̄). We now show that rhs(x̂) − rhs(x̄) ≥ 0 whenever w ≥ 0,
thus proving that I(x̄) is implied by I(x̂) and the inequality w ≥ 0. Since
at most one of γ̂t and v̂′′t is positive, this will complete the proof.

(i) Suppose first that t = 1. Then L = {1, . . . , ϕ(t)} and rhs(x̂)−rhs(x̄) =
ε(1− db1e)w, which is nonnegative if w ≥ 0.
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(ii) Now suppose that t ≥ 2 and ϕ(t − 1) ≤ ϕ(t). Then L = {ϕ(t −
1) + 1, . . . , ϕ(t)} and rhs(x̂)− rhs(x̄) = ε(dbt−1e+ 1− dbte)w, which is
nonnegative if w ≥ 0.

(iii) Finally assume that t ≥ 2 and ϕ(t− 1) > ϕ(t). Note that this implies
dbt−1e = dbte. In this case L = {0, . . . , ϕ(t)} ∪ {ϕ(t − 1) + 1, . . . ,m}
and rhs(x̂)− rhs(x̄) = ε(dbt−1e − dbte)w = 0.

(b) Assume that both γ̄t and ū′′t+1 are positive for some 1 ≤ t ≤ n−1. Define
ε = min{γ̄t, ū

′′
t+1} and let L be the set of indices ` ∈ {0, . . . , m} such that

arc r` belongs to the unique directed path from node ϕ(t + 1) to node ϕ(t).
We define a vector x̂ by setting γ̂t = γ̄t−ε, û′′t+1 = ū′′t+1−ε, γ̂t+1 = γ̄t+1 +ε,
r̂` = r̄` + ε for ` ∈ L, and all other entries equal to the corresponding
components of x̄. Note that x̂ defines a feasible flow in the network, and
lhs(x̂) = lhs(x̄). We now show that rhs(x̂) − rhs(x̄) ≥ 0 whenever w ≥ 0,
thus proving that I(x̄) is implied by I(x̂) and the inequality w ≥ 0. Since
at most one of γ̂t and û′′t+1 is positive, this will complete the proof.

(i) Suppose first that ϕ(t + 1) ≤ ϕ(t). Then L = {ϕ(t + 1) + 1, . . . , ϕ(t)}
and rhs(x̂)− rhs(x̄) = ε(dbt+1e−dbte)w, which is nonnegative if w ≥ 0.

(ii) Now assume ϕ(t+1) > ϕ(t). Note that this implies dbt+1e = dbte+1. In
this case L = {0, . . . , ϕ(t)}∪{ϕ(t+1)+1, . . . ,m} and rhs(x̂)−rhs(x̄) =
ε(dbt+1e − dbte − 1)w = 0.

¤

We can now prove Lemma 12.

Lemma 12 Let x̄ be an extreme ray of cone (41)–(45) with σ̄ = 1, and
suppose that I(x̄) is non-redundant in the description of conv(X). Then we
can assume that γ̄t = ρ̄′t for 1 ≤ t ≤ n.

Proof. For any feasible ray x of cone (41)–(45), define T (x) = {t : γt 6= ρ′t}.
If x̄ is an extreme ray of cone (41)–(45) with σ̄ = 1, then it satisfies all the
conditions listed in Lemmas 14–15. In fact, to prove the lemma we only
need to assume that x̄ satisfies those conditions. Specifically, we show that
if x̄ is a feasible flow satisfying the conditions listed in Lemmas 14–15 such
that T (x̄) 6= ∅, then I(x̄) is implied by the inequalities 0 ≤ w ≤ 1 and an
inequality I(x̂), where x̂ is a feasible flow satisfying the properties listed in
Lemmas 14–15 along with the condition |T (x̂)| = |T (x̄)| − 1. The claim will
follow.
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Let j = minT (x̄). We first assume that ρ̄′j > γ̄j . Then, since ρ̄′t = γ̄t

for t < j and since ū′′1 = v̄′1 = 0 (by Lemma 11), the support of the flow
must contain a directed path P from arc ρ′j to an arc γh for some h > j. By
Lemma 14 (b) and Lemma 15 (a), neither arc u′j+1 nor arc v′′h belongs to P .
Then P is associated with a sequence of indices j = t1 < t2 < · · · < tk = h
with k odd and consists of the following arcs:

• ρ′t1 and γtk ;

• v′′t for ti < t ≤ ti+1, 1 ≤ i ≤ k − 1, i odd;

• u′t for ti < t ≤ ti+1, 1 ≤ i ≤ k − 1, i even.

Define ε = γ̄tk = γ̄h. Since the flow is acyclic and ρ̄′t1 > 0, none of the arcs ρ′t
for t1 < t ≤ tk carries a positive flow. It follows that every arc of P carries
a flow of value at least ε. We now show that inequality I(x̄) is not needed
in the description of conv(X).

Assume first that dbtke − dbt1e − tk−1 + tk−2 − · · · + t1 ≥ 0. Starting
from x̄, we construct a feasible flow x̂ by decreasing the flow on the arcs in
P \ {γtk} by ε and increasing the flow on arc ρ′tk by ε. Note that

lhs(x̂) = lhs(x̄)+ε(ztk −zt1)−ε
∑

i>0 even
(zti+1−zti) = ε

∑

i>0 even
(zti −zti−1),

and, after a similar manipulation,

rhs(x̂) = rhs(x̄) + ε(dbtke − dbt1e)(1− w) + ε
∑

i>0 even
(ti − ti−1)w.

Consider the inequality obtained by summing up I(x̂) and the inequalities
−ε(zt − zt−1) ≥ −ε for ti−1 < t ≤ ti, 1 ≤ i ≤ k − 1, i even. The left-
hand side of this inequality is precisely lhs(x̄), while the right-hand side is
rhs(x̄)+ ε(dbtke−dbt1e− tk−1 + tk−2−· · ·+ t1)(1−w). Then I(x̄) is implied
by I(x̂) and inequality w ≤ 1. It remains to observe that |T (x̂)| = |T (x̄)|−1,
as ρ̂′tk = γ̂tk while ρ̄′tk = 0 < γ̄tk .

Now assume that dbtke − dbt1e − tk−1 + tk−2 − · · · + t1 ≤ −1. Let Q be
the unique directed path from arc γt1 to node ϕ(tk). Starting from x̄, we
construct a feasible flow x̂ by decreasing the flow on the arcs in P \ {ρ′t1} by
ε and increasing the flow along Q by ε. Note that

lhs(x̂) = lhs(x̄)− ε
∑

i>0 even
(zti − zti−1) and
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rhs(x̂) = rhs(x̄)− ε(dbtke − dbt1e)w + ε
∑

i>0 even
(ti − ti−1)w + δw,

where δ = 1 if arc r0 belongs to Q and δ = 0 otherwise. Consider the
inequality obtained by summing up I(x̂) and inequalities ε(zt − zt−1) ≥ 0
for ti−1 < t ≤ ti, 1 ≤ i ≤ k − 1, i even. The left-hand side of this inequality
is precisely lhs(x̄), while the right-hand side is rhs(x̄) − ε(dbtke − dbt1e −
tk−1 + tk−2 − · · · + t1 + δ)w. Then I(x̄) is implied by I(x̂) and inequality
w ≥ 0. It remains to observe that |T (x̂)| = |T (x̄)| − 1, as ρ̂′t1 = γ̂t1 while
ρ̄′t1 > γ̄t1 .

We now suppose that ρ̄′j < γ̄j . Then, since ρ̄′t = γ̄t for t < j and since
ū′1 = 0 (by Lemma 14), the support of the flow must contain a directed path
P either from an arc ρ′h with h > j to arc γj , or from arc v′′1 to arc γj . In
the former case, the proof is similar to that carried out above. Therefore we
only consider the case when P is a path from arc v′′1 to arc γj .

By Lemma 15 (a), arc v′′j does not belong to P . Then P is associated
with a sequence of indices 0 = t0 < t1 < t2 < · · · < tk = h with k even and
consists of the following arcs:

• γtk ;

• v′′t for ti < t ≤ ti+1, 0 ≤ i ≤ k − 1, i even;

• u′t for ti < t ≤ ti+1, 0 ≤ i ≤ k − 1, i odd.

Define ε = γ̄tk = γ̄h. Since ρ̄′t = γ̄t for t < j, every arc of P carries a flow of
value at least ε. We now show that the inequality I(x̄) is not needed in the
description of conv(X).

Assume first that dbtke − tk−1 + tk−2 − · · ·+ t0 ≥ 0. Starting from x̄, we
construct a feasible flow x̂ by decreasing the flow on the arcs in P \ {γtk} by
ε and increasing the flow on arc ρ′tk by ε. Note that

lhs(x̂) = lhs(x̄) + ε
∑

i odd
(zti − zti−1) and

rhs(x̂) = rhs(x̄) + ε dbtke (1− w) + ε
∑

i odd
(ti − ti−1)w.

Consider the inequality obtained by summing up I(x̂) and the inequalities
−ε(zt − zt−1) ≥ −ε for ti−1 < t ≤ ti, 0 ≤ i ≤ k − 1, i odd. The left-
hand side of this inequality is precisely lhs(x̄), while the right-hand side is
rhs(x̄) + ε(dbtke − tk−1 + tk−2 − · · · + t0)(1 − w). Then I(x̄) is implied by
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I(x̂) and inequality w ≤ 1. It remains to observe that |T (x̂)| = |T (x̄)| − 1,
as ρ̂′tk = γ̂tk = ε while ρ̄′tk = 0 < γ̄tk .

Now assume that dbtke − dbt1e − tk−1 + tk−2 − · · · + t0 ≤ −1. Let Q be
the unique directed path from arc γ0 to node ϕ(tk). Starting from x̄, we
construct a feasible flow x̂ by decreasing the flow on the arcs in P by ε and
increasing the flow along Q by ε. Note that

lhs(x̂) = lhs(x̄)− ε
∑

i odd
(zti − zti−1) and

rhs(x̂) = rhs(x̄)− ε dbtkew + ε
∑

i odd
(ti − ti−1)w.

Consider the inequality obtained by summing up I(x̂) and inequalities ε(zt−
zt−1) ≥ 0 for ti−1 < t ≤ ti, 0 ≤ i ≤ k − 1, i odd. The left-hand side of this
inequality is precisely lhs(x̄), while the right-hand side is rhs(x̄)− ε(dbtke −
tk−1 + tk−2−· · ·+ t0)w. Then I(x̄) is implied by I(x̂) and inequality w ≥ 0.
It remains to observe that |T (x̂)| = |T (x̄)| − 1, as ρ̂′tk = γ̂tk = 0 while
ρ̄′tk = 0 < γ̄tk . ¤
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