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Abstract 
 
Recently minimal and extreme inequalities for continuous group relaxations of general mixed 
integer sets have been characterized. In this paper, we consider a stronger relaxation of general 
mixed integer sets by allowing constraints, such as bounds, on the free integer variables in the 
continuous group relaxation. We generalize a number of results for the continuous infinite group 
relaxation to this stronger relaxation and characterize the extreme inequalities when there are two 
integer variables. 
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1 Introduction

Following on from the pioneering work of Gomory and Johnson [15, 16]
and Johnson [18] in the 1970’s there has been renewed interest in the last
few years in studying infinite group relaxations of mixed integer programs
(MIPs). Various efforts to strengthen inequalities obtained from group re-
laxations have also been made, such as adding bounds on the variables or
taking into account the integrality of some of the variables. To describe
these directions of work more precisely and also to see where this paper fits
in, we first describe a generic relaxation of a simplex tableau where the basic
variables are constrained to be integral.

Definition 1.1 (R(f, S, W,G)) Let R(f, S,W,G) be the set of points x ∈
Zm together with functions y : W → R+ and z : G → Z+ which satisfy

x = f +
∑

w∈W

wy(w) +
∑

u∈G

uz(u),

x ∈ S := {v ∈ Zm |Av ≤ b},
0 ≤ y(w) ≤ T (w)∀w ∈ W,

0 ≤ z(u) ≤ U(u), z(u) ∈ Z+, ∀u ∈ G,

y, z have finite support,

where W ⊆ Rm, G ⊆ Rm, A ∈ Qq×m and b ∈ Qq×1, f ∈ (Qm\Zm)∩conv(S),
T (w) ∈ R+ ∪ {+∞} ∀w ∈ W , and U(u) ∈ R+ ∪ {+∞} ∀u ∈ G.

The basic variables, the continuous and integer nonbasic variables, and
the right-hand-side of the simplex tableau are modeled by x, y and z, and
f in the relaxation R(f, S,W,G) respectively.

When S = Zm and the bounds T and U are set to +∞, R(f, S, W,G) is
the mixed integer group relaxation. When in addition G = ∅, it is the contin-
uous group relaxation that has been recently addressed in Andersen et al. [2],
Borozan and Cornuéjols [9], Cornuéjols and Margot [12], and Zambelli [23].
A lattice-free set is a set K ⊆ Rm such that int(K) ∩ Zm = ∅. It has been
shown that for the continuous infinite group relaxation (W = Rm) there is
a close relationship between maximal lattice-free convex sets (convex sets
that are lattice-free and maximal wrt to this property) and minimal valid
inequalities (undominated inequalities, see Section 2). In two dimensions,
maximal lattice-free polyhedra generating extreme inequalities for contin-
uous group relaxations are well understood; see Andersen et al. [2] and
Cornuéjols and Margot [12]. Very recently Andersen et al. [1] have consid-
ered the effect of adding bounds on the continuous nonbasic variables y and
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Dey and Wolsey [13] have examined how inequalities can be strengthened
when some of the nonbasic variables are integer.

Observe that constraints on the basic variables x that define S can be
rewritten as constraints on the nonbasic variables y and z. Burdet and
Johnson [11] present an algorithmic approach for solving an optimization
problem over the set R(f,Zm, ∅, G) with additional constraints on the non-
basic variables. Johnson [19] added constraints on the set of basic variables.
In [19], he considered the case where S is a finite set and derived properties
of facet-defining inequalities for R(f, S, W, ∅). Here we pursue a closely re-
lated case. More explicitly, we restrict the basic variables x to a set S ⊆ Zm

where S = P ∩Zm may be finite or infinite, P is a polyhedron and conv(S)
is full-dimensional. One reason for allowing S ( Zm and not necessarily
finite is to allow for the fact that the basic integer variables are typically
non-negative but are not necessarily bounded.

In this paper, we address whether and how the recent results linking
maximal lattice-free convex sets and extreme inequalities for the continuous
group relaxation extend to the case where S ( Zm. Natural questions that
arise are:

1. Given a function π : Rm → R associated with a minimal valid in-
equality of the form

∑
w∈Rm π(w)y(w) ≥ 1 for R(f, S,Rm, ∅), the set

P (π) = {w ∈ Rm |π(w − f) ≤ 1} is a maximal S-free convex set (i.e.
a convex set with no point of S in its interior and maximal wrt to this
property; see Section 2 for formal definitions). This is proven by Basu
et al. [7]. Thus maximal S-free convex sets form a natural extension of
the maximal lattice-free convex sets. Are maximal S-free convex sets
polyhedra, like maximal lattice-free convex sets? Under some techni-
cal conditions we show that maximal S-free convex sets are polyhedra
with one point of S in the relative interior of each facet (See Appendix
1).

2. Maximal lattice-free polyhedra in m-dimensions have at most 2m facets.
Can we bound the number of facets of maximal S-free convex sets? In
Section 3 we show that the maximum number of facets of a maximal
S-free convex set K is 2m − t where t is the ‘order’ of K wrt to a
formulation of the set S. If S = Zm, the order of maximal lattice-
free convex sets is 0 and therefore this result generalizes the result for
maximal lattice-free polyhedra.

3. Given a maximal lattice-free polyhedron with f in its interior, there ex-
ists a unique minimal inequality for the continuous infinite group relax-
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ation corresponding to it. Does there exist such a relationship between
maximal S-free convex sets and minimal inequalities for R(f, S,Rm, ∅)?
In Section 4 we address this question. Given a maximal S-free poly-
hedron K, we construct a minimal inequality π such that K = P (π)
and show that there exists no other inequality π′ such that π′ 6= π and
P (π′) = K.

4. For the case of two integer variables, what shapes do ‘interesting’ max-
imal S-free polyhedra take or which sets lead to extreme valid inequal-
ities? This question is addressed in Section 5. We show that there are
two families of maximal S-free polyhedra (which are not lattice-free)
that lead to extreme inequalities for R(f, S,Rm, ∅). We note here that
Johnson [19] proves that these inequalities are extreme when W and
S are finite. The result in this section establishes the converse, i.e. it
is sufficient to consider maximal S-free polyhedra of these two families
to yield all extreme inequalities for R(f, S,W, ∅).

We illustrate the points made above with an example.

Example 1.1 Let f = (0.5, 0.5) and let S = {(x1, x2) ∈ Z2 | 0 ≤ x1 ≤
1, x2 ≥ 0}. It can be verified (Section 4) that the function

π(w) =





1.5w1 + 0.5w2 if w2 ≥ 0, 3w1 ≥ w2

−4.5w1 + 2.5w2 if w2 ≥ 2w1, w2 ≥ 3w1

1.5w1 − 0.5w2 if w2 ≤ 0, 2w1 ≥ w2

(1)

yields a valid inequality for R(f, S,R2, ∅) of the form
∑

w∈R2 π(w)y(w) ≥ 1.
This can be used to generate a valid inequality for a mixed integer set such
as:
(

x1

x2

)
=

(
0.5
0.5

)
+

(
1
3

)
y1 +

( −1
−2

)
y2 +

(
0
−1

)
y3 +

(
1
0

)
y4

x1 ∈ {0, 1}, x2 ∈ Z+ (2)
y1, y2, y3, y4 ≥ 0.

Let ri denote the column corresponding to yi above. Then
∑4

i=1 π(ri)yi ≥ 1
is the inequality

3y1 − 0.5y2 + 0.5y3 + 1.5y4 ≥ 1,

which is a facet-defining for (2) and cuts off the solution y = 0̄ and x =
(0.5, 0.5)T . Observe that
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• ‘Group inequalities’, i.e., inequalities obtained when R(f, S,W,G) is
the group relaxation, have only non-negative coefficients. On the other
hand, π(w) takes negative values for some w.

• The set P (π) := {w ∈ Rm |π(w − f) ≤ 1} = {(w1, w2) ∈ R2| − 9w1 +
5w2 ≤ 0, 3w1 +w2 ≤ 4, 3w1−w2 ≤ 3} is illustrated in Figure 1. Notice
that it is an S-free convex set, i.e., it does not contain any point of
S in its interior. It can be verified that it is a maximal S-free convex
set since it is a polyhedron and contains one point of S in the relative
interior of each facet.

−1 0 1 2

−1

0

1

2

3

4

w
1

2

conv(S)

P(π)

f

Figure 1: Example of P (π).

• In Section 4 it will be shown that given a maximal S-free polyhedron K
with f in its interior, there exists a unique function πK : Rm → R such
that P (πK) = K and πK is an minimal inequality for R(f, S,Rm, ∅).
Thus, π described by (1) is a minimal inequality for R(f, S,R2, ∅).

• P (π) has three facets. It will be shown that when m = 2, all ‘interest-
ing’ maximal S-free polyhedra (that are not lattice-free) have at most
three facets.

• The constraints on the x variables are 0 ≤ x1 ≤ 1 and x2 ≥ 0. It can be
verified that if we relax S to be the set defined by the constraint x2 ≥ 0,
i.e., we let S′ : {(x1, x2) ∈ Z2 |x2 ≥ 0}, then π is still a valid inequality
for R(f, S′,R2, ∅). Informally, the maximum number of inequalities
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defining S that are ‘critical’ in the validity of π will be defined as the
order of the S-free convex set. In Section 3 it will be shown that the
number of facets of maximal S-free polyhedron is bounded from above
by 2m less the order of the inequality wrt a formulation of S. Moreover,
in Section 5.2 it will be shown that almost all ‘interesting’ facets in the
case of two rows have an order of 1, i.e., their validity depends on at
most one constraint defining S.

2 Valid Inequalities and Maximal S-free Convex
Sets

We consider the relaxation R(f, S, W,G) where G = ∅, W ⊆ Rm, S ⊆ Zm,
and T (w) = +∞ ∀w ∈ W . Since G = ∅, we use the symbol R(f, S, W )
to represent R(f, S, W,G). In the case where W = Rm we use the symbol
R(f, S).

Any valid inequality for R(f, S, W ) that cuts off the fractional point
x = f and y = 0̄, can be scaled and rewritten as

∑
w∈W π(w)y(w) ≥ 1.

Instead of considering all valid inequalities for R(f, S,W ), we focus our
attention on this sub-class of valid inequalities. We next formally define valid
inequalities, a hierarchy of ‘strong’ valid inequalities (similar to those studied
for the group relaxation) and a set P (π) ⊆ Rm corresponding to any valid
inequality π that plays an important role in analyzing the strength of the
inequality. The definition of inequalities and their hierarchy were introduced
for the group problem in Gomory and Johnson [17] and that of P (π) for the
continuous group problem was defined in Borozan and Cornuéjols [9].

Definition 2.1 (Valid, Minimal, and Extreme Inequalities) 1. The
function π : W → R is a valid inequality for R(f, S,W ) if

∑

w∈W

π(w)y(w) ≥ 1 ∀y ∈ R(f, S, W ).

The terms ‘valid inequality’ and ‘valid function’ are used interchange-
ably.

2. Let P (π) ⊆ Rm be the set P (π) = {w ∈ Rm |π(w − f) ≤ 1}.
3. A valid function π is minimal if there exists no valid function π′ for

R(f, S,W ) such that π′ 6= π and π′ ≤ π.

4. A valid function π is extreme if there do not exist two valid functions
π1 and π2 for R(f, S, W ) such that π1 6= π2 and π = 1

2π1 + 1
2π2.
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Proposition 2.1 below presents some properties of minimal inequalities
for R(f, S). The proof of Proposition 2.1 is similar to that in Borozan and
Cornuéjols [9] (also see Johnson [19]). We first present a definition.

Definition 2.2 (Maximal S-free Convex Set) A convex set K ⊂ Rm is
a maximal S-free convex set if int(K)∩S = ∅ and there exists no convex set
K ′ such that int(K ′) ∩ S = ∅ and K ′ ) K.

Note here that when S = Zm, a maximal S-free convex set is called a
maximal lattice-free convex set (Lovász [20]).

Proposition 2.1 (Minimality ⇒) If π : Rm → R is a minimal function
for R(f, S), then

1. π(0̄) = 0, π is positively homogenous, subadditive, and convex,

2. P (π) is a S-free convex set,

3. f ∈ P (π).

In fact the following stronger result can be proven: if π : Rm → R is a
minimal function for R(f, S), then P (π) is a maximal S-free convex set. A
very elegant proof of this fact is given by Basu et al. [7].

3 Properties of Maximal S-free Convex Sets

In Appendix 1, it is shown that under some technical condition a maximal
S-free convex set is a polyhedron. More precisely the following statement is
verified in Appendix 1: Let K be an S-free convex set with the following
properties: (1) K∩conv(S) is full-dimensional (2) if rec.cone(K∩conv(S)) )
{0}, then there exists d1, ..., dt ∈ Zm such that d1, ..., dt ∈ rec.cone(K ∩
conv(S)) and lin{d1, ..., dt} = lin(rec.cone(K ∩conv(S))). Then K is a max-
imal S-free convex set if and only if it is a polyhedron that contains at least
one point of S in the relative interior of each facet. Basu et al. [7] recently
showed that the above mentioned technical conditions are not necessary (see
also Basu et al. [6]).

Figure 2 illustrates some maximal S-free convex sets in two dimensions
(S = {(x1, x2) ∈ Z2 |x2 ≤ −3}).
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interior

A maximal S−free
convex set that is
also lattice−free

Figure 2: Some maximal S-free convex sets.

The maximum number of inequalities required to define an m-dimensional
maximal lattice-free convex set is 2m (Doignon [14], Bell [8], Scarf [22]). Next
we present a bound on the number of facets of a maximal S-free polyhedron
in m-dimensions, when it contains one or more integer points in its interior.
Informally, the bound is obtained as follows: Add linear inequalities to the
description of K sequentially, until it becomes maximal lattice-free. Then
the bound on the number of facets of K is 2m less the number of inequal-
ities added to the description of K. The linear inequalities we add to the
description of K are parallel to the linear inequalities used to describe S.

Before presenting this result, we introduce some notation.

Definition 3.1 (Formulation, Critical Subset, and Order) Let K be
an S-free polyhedron. A polyhedral set P ⊆ Rm is called a ‘formulation’ for
S if P ∩ Zm = S where P = ∩1≤j≤cP

j and P j = {x ∈ Rm | (aj)T x ≤ bj}
(aj ∈ Zm×1 and bj ∈ Z). For any subset J of {1, ..., c}, denote SP,J =
(∩j∈JP j) ∩ Zm. A subset J ⊆ {1, ..., c} is critical if

1. K is SP,J -free, and

2. For each j ∈ J (if J is nonempty), ∃ p ∈ int(K) ∩ Zm such that
(aj)T p > bj and (ak)T p ≤ bk ∀k ∈ J \ {j}.

If K is an S-free convex set, P is a formulation of S, and t is the cardinality
of the largest critical subset of {1, ..., c}, then K is of order t with respect to
P .
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Condition (1.) in Definition 3.1 implies that if we remove all the linear
inequalities describing S except those in the set J , K still remains S-free
(since S ⊆ SP,J ). Condition (2.) in Definition 3.1 implies that each linear
inequality (aj)T x ≤ bj in the set J is necessary to maintain the SP,J -free
status of K, since there exist integer points in the interior of K that are
infeasible for SP,J where the infeasibility is solely due to the jth inequality
in the set J . Together conditions (1.) and (2.) imply that if we remove all
the inequalities in {1, ..., c} \ J the set K remains SP,J -free, but removing
additional inequalities does not preserve this property.

Example 3.1 1. Consider P , S, and K as defined below.

P := {(x1, x2) ∈ R2|x2 ≥ 2, x1 + x2 ≤ 4}, S = P ∩ Z2

K := {(x1, x2) ∈ R2|2.25x1 + x2 ≥ 4.25, 2.75x1 + x2 ≤ 5.75}

(See Figure 3) Then K is a maximal S-free convex set of order 2 wrt
to the formulation P .

−1 0 1 2 3
−3

−2

−1

0

1

2

3

4

5

6

7

8

 

 

S

K

Figure 3: Order of K is 2 wrt P .

2. It is possible to have two subsets J 1,J 2 ⊆ {1, ..., c} such that both J 1
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and J 2 are critical. Let

P :=



(x1, x2) ∈ R2

∣∣∣∣∣∣

x1 ≤ 0.5
x1 + x2 ≤ 1.5
x1 − x2 ≤ 0.5





S := P ∩ Z2

K := {(x1, x2) ∈ R2|x1 ≥ 0}

Then observe that the subsets J 1 = {1} and J 2 = {2, 3} of {1, 2, 3}
are critical.

Observation 3.1 The order of an S-free convex set with respect to a for-
mulation P is well-defined.

Proof: Since the number of subsets of {1, ..., c} is finite, it is sufficient
to verify that there exists a critical subset of {1, ..., c}. Let J = {J ⊆
{1, ..., c} |K is SP,J − free}. Clearly J is non-empty since K is S-free. Let
J1 ∈ J be such that if J2 ∈ J, then J2 ( J1. By construction J1 satisfies
condition (1.) of Definition 3.1. If J1 is the empty set, then the proof is com-
plete. Otherwise, as no proper subset of J1 belongs to J, on removing any
one constraint (aj)T x ≤ bj from those in J1, K is not SP,J\{j}-free. There-
fore there exists pk ∈ int(K) ∩ Zm such that (aj)T pk > bj and (ak)T pk ≤ bk

∀k ∈ J1. Therefore J1 satisfies condition (2.) of Definition 3.1. ¤
Next we present a lemma that illustrates that we can obtain maximal

lattice-free convex sets by sequentially adding linear inequalities to the de-
scription of K.

Lemma 3.1 Let K be a maximal S-free polyhedron of order t wrt formula-
tion P where t ≥ 1. Let c inequalities describe P and let J = {1, ...., j} be
a critical subset of {1, ..., c} of maximal cardinality. Let Q1 = {q ∈ int(K)∩
Zm | (a1)T q > b1, (ak)T q ≤ bk ∀k ∈ J \ {1}} and b̂1 = min{(a1)T x |x ∈ Q1}.
Set K1 := K ∩ {x ∈ Rm | (a1)T x ≤ b̂1} and S̄1 := SP,J\{1}. Then,

1. K1 is a maximal m-dimensional S̄1-free convex set of order at least
t− 1 wrt the polyhedron defined by the inequalities in the set J \ {1}

2. The number of facets of K1 is one more than the number of facets of
K.

3. If p ∈ S ∩ bnd(K), then p ∈ bnd(K1).
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Proof: For simplicity take S := SP,J and take P to be the polyhedron
described by the inequalities in the set J . Note that Q1 6= ∅ by definition of
J . Also note that by the well-ordering of the integers b̂1 = min{(a1)T x |x ∈
Q1} exists and b̂1 > b1.

1. Claim 1: K1 is an S̄1-free convex set. Note that the set of integer
points in int(K1) is a subset of (int(K) ∩ Zm) \ Q1. By definition of
Q1, if q ∈ (int(K)∩Zm)\Q1, there exists j 6= 1 such that (aj)T q > bj .
This proves that K1 is a S̄1-free convex set.
Claim 2: K1 is a maximal S̄1-free convex set: By Proposition 6.3, to
verify that K1 is a maximal S̄1-free convex set, we verify the following:

(a) The set

K1 ∩ {x ∈ Rm | (a1)T x = b̂1}
is a facet of K1 and there exists a q ∈ S̄1 that lies in the relative
interior of this facet: Let K be the set (gi)T x ≤ hi for 1 ≤
i ≤ z. Notice from the definition of b̂1 that there exists at least
one integer point p belonging to Q1 that satisfies the inequality
(a1)T x ≤ b̂1 at equality. Since by definition of Q1, p ∈ int(K),
we obtain that

(gi)T p < hi ∀1 ≤ i ≤ z

(a1)T p = b̂1.

Thus p is a point on the boundary of K1 and there is exactly
one inequality that defines K1 that is satisfied at equality by p.
Therefore this inequality (a1)T x ≤ b̂1 is facet-defining and p lies
in the relative interior of this facet.

(b) All the other facets of K1 are the facets of K that contain integer
points belonging to S̄1 in their relative interior: Note that S̄1 ⊇ S.
Let K be the set (gi)T x ≤ hi for 1 ≤ i ≤ z. Consider the uth

facet of K, (gu)T x ≤ du. Since K is a maximal S-free polyhedron,
every facet of K has a point p ∈ S in its relative interior, i.e.,

(gu)T p = hu

(gv)T p < hv, v 6= u.

Since p ∈ S, we have (a1)T p ≤ b1. However, since by definition
b̂1 > b1, one has,

(a1)T p < b̂1.
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Thus p belongs to the boundary of K1 and satisfies exactly one
inequality that defines K1 at equality. Therefore the inequality
(gu)T x ≤ hu represents a facet of K1 and p ∈ S̄1 belongs to the
relative interior of this facet of K1.

Claim 3: K1 is a maximal S̄1-free convex set of order at least t − 1:
Notice that addition of the inequality (a1)T x ≤ b̂1 to the description
of K does not cut off any of the integer points belonging to Qj = {q ∈
int(K) | (aj)T q > bj , (ak)T q ≤ bk ∀k ∈ J \ {j}} from the interior of
K1. These sets are non-empty by the definition of J . This proves the
result.

2. This follows from the proof of part (1.).

3. This follows from the proof of part (1.). ¤

Proposition 3.1 If K is a maximal m-dimensional S-free polyhedron of
order t wrt to any formulation P , then K has at most 2m − t facets.

Proof: By repeating the procedure described in Lemma 3.1 t times we
obtain a maximal lattice-free convex set. Since maximal lattice-free convex
sets have at most 2m facets we obtain the result. ¤

Corollary 3.1 Every full-dimensional maximal S-free polyhedron in m di-
mensions has a maximum order of 2m wrt any formulation of S.

Corollary 3.2 If K is a full-dimensional maximal S-free polyhedron in m
dimensions with at least one integer point in its interior, then it has at most
2m − 1 facets.

4 Construction of Minimal and Extreme Inequal-
ities for R(f, S)

We begin by discussing the construction of minimal inequalities using max-
imal S-free polyhedra. We use K − f to denote the set {x− f |x ∈ K}.

Construction 4.1 (Construction of Valid inequality: πK)

1. Let K ⊂ Rm be a maximal S-free polyhedron such that K ∩ conv(S) is
full-dimensional and K contains f in its interior.
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2. Let K∗ = {w |wT x ≤ 1∀x ∈ K − f} be the polar of K − f . Let
Ko = {w ∈ K∗ | ∃x ∈ K − f s.t.wT x = 1} ⊆ K∗.

3. Define the function πK : Rm → R as πK(u) = supg∈Ko{(g)T u}. Since
K−f can be written as a set {x | (gj)T x ≤ 1, j ∈ {1, ..., l}} (as 0̄ belongs
to the interior of K − f and K is polyhedral), πK can be written as

πK(u) = max1≤j≤l{(gj)T u}.

The natural interpretation of the function πK is that it is the inequality
obtained after applying the disjunction ∨1≤j≤l(RL(f, S) ∧ {(x, y) | (gj)T x ≥
1}), where RL(f, S) is the linear programming relaxation of R(f, S) (Balas [4]).
We next prove that πK is a minimal inequality for R(f, S), and that given a
maximal S-free polyhedron K containing f in its interior, this is the unique
way to construct a minimal valid inequality using K. We note here that
Johnson [19] gave the construction of πK starting directly from conv(Ko).

To compare these inequalities with respect to group inequalities, observe
that the set Ko is a subset of the polar of K. πK being the support function
of Ko has a value at most as large as the gauge function of K (since the
gauge function of K is the support function of the polar of K). In particular,
if int(rec.cone(K)) is empty (which happens for example when S = Zm and
R(f, S) is the group relaxation), the gauge function of K is equal to πK .
Then the function πK is the intersection cut presented in Balas [3] (See also
Burdet [10]). On the other hand if int(rec.cone(K)) 6= ∅, then πK is strictly
stronger than the gauge function of K and takes negative values for points
in the interior of the recession cone of K.

Proposition 4.1 (πK is Minimal) Let K ⊂ Rm be a maximal S-free poly-
hedral set which contains f in its interior. Then

1. πK is a valid function for R(f, S),

2. P (πK) := {x |πK(x− f) ≤ 1} = K,

3. πK is a minimal valid function for R(f, S),

4. If π′ is any minimal valid function such that P (π′) = K, then π′ = πK .

Proof:

1. Proof of validity of πK : Note first that πK being a support function is
positively homogenous and subadditive (see Rockafellar [21]). Now the
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validity is proven by showing that if wo ∈ S, then πK(wo−f) ≥ 1: As
wo−f /∈ int(K−f), by the separation theorem there exists a half-space
αT x ≤ β such that αT (wo − f) = β and αT x ≤ β ∀x ∈ K − f . Let
β0 = max{αT x|x ∈ K − f}. As 0̄ ∈ int(K − f), β0 > 0. Also β0 ≤ β.
Then setting α̂ = α

β0 we obtain that α̂ ∈ Ko and α̂T (wo − f) ≥ 1.
Therefore, πK(wo − f) ≥ α̂T (w0 − f) ≥ 1.

2. P (πK) = K:

• P (πK) ⊇ K: We need to show that if w ∈ K, then πK(w−f) ≤ 1.
By definition of Ko, if u ∈ Ko then uT (w − f) ≤ 1. Thus,
πK(w − f) = maxgj∈Ko{(gj)T (w − f)} ≤ 1.

• P (πK) ⊆ K: We prove that if w /∈ K, then πK(w − f) > 1.
By the separation theorem there exists a half-space αT x ≤ β
such that αT (w − f) = β and αT x < β ∀x ∈ K − f . Let β0 =
max{αT x|x ∈ K − f}. As 0̄ ∈ int(K − f), β0 > 0. Also β0 < β.
Then setting α̂ = α

β0 , we obtain that α̂ ∈ Ko and α̂T (w− f) > 1.

3. πK is minimal: Assume by contradiction that πK is not minimal. Let
π′′ be a valid function such that π′′ < πK . Now it is possible to
construct a function π′ ≤ π′′ such that π′ is valid, π′ is subadditive
and positively homogenous and P (π′) is an S-free convex set; see one
proof in Basu et al. [6]. Since both π′ and πK (by construction) are
positively homogenous, we obtain that P (π′) ⊇ P (πK) = K. Since
P (π′) is an S-free convex set and K is a maximal S-free convex set,
we obtain that P (π′) = K.
Claim 1: If w ∈ (Rm\rec.cone(K−f)), then π′(w) = πK(w) = λ where
f + w

λ ∈ bnd(K). (This is proven in Borozan and Cournuéjols [9]. We
present this part for completeness): Let w ∈ Rm \ rec.cone(K − f).
Since both π′ and πK are positively homogenous, it is sufficient to com-
pare these functions on the boundary of K − f . WLOG assume that
(g1)T w = 1 and (gj)T w ≤ 1 ∀j 6= 1. Then πK(w) = maxj{(gj)T w)} =
1. If π′(w) < 1, then there exists λ > 1 such that π′(λw) = 1.
Therefore λw ∈ K − f . Since P (π′) = K, this is a contradiction as
(g1)T (λw) > 1.
Claim 2: If u belongs to a face of the recession cone of K − f , then
π′(u) = 0 = πK(u). Since u ∈ rec.cone(K−f), (gj)T u ≤ 0 ∀1 ≤ j ≤ l.
WLOG assume that (g1)T u = 0. Then πK(u) = maxj{(gj)T u)} = 0.
By Claim 1, π′(w) = πK(w) for all w ∈ bnd(K − f). For ε > 0,
and w′ on the face {w | (g1)T w = 1} ∩ (K − f), we have w′ + εu
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also belongs to the face {w | (g1)T w = 1} (since (g1)T (w′ + εu) =
(g1)T w′ = 1). Since π′ is subadditive and positively homogenous,
π′(w′) + επ′(u) ≥ π′(w′ + εu) or π′(u) ≥ 1

ε (π
′(w′ + εu) − π′(w′)) =

1
ε (π

K(w′ + εu)− πK(w′)) = 1
ε (1− 1) = 0. Thus π′(u) = 0.

Claim 3: If v ∈ int(rec.cone(K − f)), then π′(v) = πK(v). WLOG
assume that πK(v) = (g1)T v < 0 and (gj)T v ≤ (g1)T v ∀j 6= 1. Let
u be a vector on the face {x | (g1)T x = 1} ∩ (K − f) or (g1)T u = 1
and (gj)T u ≤ 1 ∀j 6= 1. Let γ = (g1)T u

−(g1)T v
. Then g1(u + γv) = 0 and

gj(u + γv) ≤ 0 ∀j 6= 1. Thus u + γv ∈ bnd(rec.cone(K − f)). By the
previous claims, π′(v + γv) = 0 and π′(u) = 1. Since π′ is subadditive
and positively homogeneous π′(u) + γπ′(v) ≥ π′(u + γv), we obtain
π′(v) ≥ − 1

γ = πK(v).

4. Let π′ be a minimal valid inequality such that P (π′) = K. Then π′

is subadditive and positively homogeneous. Using these conditions,
observe that the proof of (3.) establishes that π′ = πK .

¤
Next we consider the question of extremality of the inequalities πK . In

Proposition 4.4 below we construct a finite set T ⊂ Rm and show that
πK is extreme for R(f, S) if and only if πK restricted to T is extreme for
R(f, S, T ). Cornuéjols and Margot [12] present a similar result for the case
where K is a maximal lattice-free convex set in R2.

We first observe that extreme inequalities must be minimal. The proof
relies on the non-negativity of the y variables. See Gomory and Johnson [15]
for a proof.

Proposition 4.2 (Extreme ⇒ Minimal) If π is an extreme function for
R(f, S), then it is minimal for R(f, S).

Thus it is sufficient to consider only minimal functions to obtain extreme
inequalities for R(f, S). Next we present a preliminary result that is used
in the proof of Proposition 4.4. See Gomory and Johnson [15] for a proof.

Proposition 4.3 If π is a minimal function for R(f, S) and there exist
valid functions π1, π2 : Rm → R such that π1 6= π2 and π = 1

2π1 + 1
2π2, then

π1 and π2 are minimal.

Given a function π : Rm → R, we denote the restriction of π to the
domain T ⊆ Rm by π|T . The next definition presents the notation used for
the construction of the finite subset T of Rm.
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Definition 4.1 Given K − f = {x ∈ Rm | (gj)T x ≤ 1, j ∈ {1, ..., l}}, define
the cone Cj = {x ∈ Rm | (gj − gk)T x ≥ 0∀k 6= j} (If K is a half-space, then
set C1 := Rm). Let V j be a finite set of generators for Cj.

Observe that πK |Cj (u) = (gj)T u.

Proposition 4.4 (Finite ⇔ Infinite) Let K be a full-dimensional maxi-
mal S-free polyhedron and let T := ∪1≤j≤lV

j, where V j is a finite set of
generators for Cj. Then πK : Rm → R is an extreme inequality for R(f, S)
if and only if πK |T : T → R is an extreme inequality for R(f, S, T ).

Proof: ⇒ Let πK : Rm → R be an extreme inequality for R(f, S). Assume
by contradiction that πK |T : T → R is not extreme. So there exist valid
inequalities π̃1, π̃2 : T → R for R(f, S, T ) such that π̃1 6= π̃2 and πK |T ≥
1
2 π̃1 + 1

2 π̃2. Construct the function π1 : Rm → R as follows

π1(u) = minCj3u





min
∑

wi∈V j λiπ̃1(wi)
s.t.

∑
wi∈V j λiw

i = u
λi ≥ 0∀i.

Observe that π1 (and π2 defined similarly using π̃2) is well-defined for every
u ∈ Rm as given any u ∈ Rm, u ∈ Cj∗ where j∗ ∈ argmaxj{(gj)T u}.

Claim: π1 : Rm → R is a valid inequality for R(f, S). For any w ∈ Rm,
let λw ∈ R|T |+ be such that π1(w) =

∑
wi∈T λw

i π̃1(wi) and
∑

wi∈T λw
i wi =

w. Let ȳ ∈ R(f, S). Therefore
∑

w∈Rm wȳ(w) + f ∈ S, or equivalently∑
w∈Rm(

∑
wi∈T λw

i wi)ȳ(w) + f ∈ S. Thus setting λ̃ =
∑

w∈Rm ȳ(w)λw, we
obtain

∑
wi∈T λ̃iw

i + f ∈ S. Hence λ̃ ∈ R(f, S, T ). Since by definition
π̃1 is a valid inequality for R(f, S, T ), we obtain

∑
wi∈T π̃1(wi)λ̃i ≥ 1 or

equivalently
∑

w∈Rm π1(w)ȳ(w) ≥ 1.
Now we verify that πK ≥ 1

2π1 + 1
2π2 to obtain a contradiction to the fact

that πK is extreme: Choose any u ∈ Rm and let λ ∈ R|Vj |
+ be such that u =∑

wi∈V j λiw
i. Note that since the function πK is linear in the cone Cj , we ob-

tain that πK(u) = (gj)T u =
∑

wi∈V j λi((gj)T wi) =
∑

wi∈V j λi(πK |T (wi)).
Also observe that π1(u) ≤ ∑

wi∈V j λiπ̃1(wi). Thus we obtain,

1
2
π1(u) +

1
2
π2(u) ≤

∑

wi∈V j

λi(
1
2
π̃1(wi) +

1
2
π̃2(wi))

≤
∑

wi∈V j

λi(πK |T (wi))

= πK(u).
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Finally in order to complete the proof, we need to verify that π1 6= πK :
Observe that π1|T ≤ π̃1 and π2|T ≤ π̃2. Since πK |T ≥ 1

2 π̃1 + 1
2 π̃2 and

π̃1 6= π̃2, there exists u ∈ T such that π̃1(u) < πK(u). Thus π1(u) < πK(u).
⇐ Let πK |T : T → R be an extreme inequality for R(f, S, T ). Assume by

contradiction that πK is not extreme. So there exist valid functions π1, π2 :
Rm → R such that π1 6= π2 and π = 1

2π1 + 1
2π2. Note that π1|T = π2|T =

πK |T . Since πK is minimal, π1 and π2 are minimal. Therefore π1 and π2 are
subadditive and positively homogenous. Consider any u ∈ Rm. The point
u can be written as a conic combination of the vectors wi ∈ cj for some j,
i.e. let u =

∑
wi∈Cj λiw

i. Thus we obtain that π1(u) = π1(
∑

wi∈Cj λiw
i) ≤∑

wi∈Cj λiπ1(wi) =
∑

wi∈Cj λiπ|T (wi) = πK(u). This is a contradiction
since minimality of πK implies that π1 = πK . ¤

We end this section with a discussion on the construction of πK . Notice
that we have allowed only the case where f ∈ int(K) instead of f ∈ K.
It turns out that when we consider R(f, S, W ) with W is a finite set, it is
possible to construct an S-free polyhedron that contains f in its interior
to generate any valid cut. This result is proven for intersection cuts based
on two-dimensional maximal lattice-free convex sets in Cornuéjols and Mar-
got [12] and for general lattice-free convex sets in Zambelli [23]. Although
the proof is modified here, the key ideas are similar. Notice also that we
may need to redefine S appropriately.

Proposition 4.5 Let W = {r1, r2, ..., rl} ⊂ Qm. Let
∑l

i=1 αiyi ≥ 1 be a
valid inequality for R(f, S, W ) where αi ∈ Q ∀i ∈ {1, ..., l}. Let S satisfy the
condition that ∀x̄ ∈ S, ∃ȳ ∈ RW

+ such that x = f + Wȳ. Then there exists
an S-free convex polyhedron K such that f ∈ int(K) and πK(ri) ≤ αi.

Proof: Given a valid inequality
∑l

i=1 αiy1 ≥ 1 for R(f, S, W ), the set
Pα = {x ∈ Rm | ∃y ≥ 0 s.t. x = f +

∑l
i=1 riyi,

∑l
i=1 αiyi ≤ 1} is an S-free

polyhedral set. Let Pα = {x | (gj)T x ≤ hj , 1 ≤ j ≤ c} where gj ∈ Qm×1 and
hj ∈ Q and each inequality satisfies at least one point of Pα at equality, i.e.,
there are no redundant inequalities.
Claim 1: If hj − (gj)T f > 0, then (gj)T (ri)

hj−(gj)T f
≤ αi.

1. αi > 0: Then observe that the point x̄ = f + ri

αi
∈ Pα. Therefore

(gj)T (f + ri

αi
) ≤ hj or (gj)T (ri)

hj−(gj)T f
≤ αi.

2. αi = 0: Observe first that if αi = 0, then all points of the form
f + λri, λ ≥ 0 belong to Pα. Therefore (gj)T (f + λri) ≤ hj ∀λ ≥ 0.
This implies that (gj)T (ri) ≤ 0. Therefore (gj)T (ri)

hj−(gj)T f
≤ 0 = αi.
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3. αi < 0: Similar to the previous part, it can be verified that (gj)T (ri) ≤
0 whenever αi ≤ 0. Now observe that there must exist some e ∈
{1, ..., l} such that (gj)T (re) > 0. If not, then for all points in Pα

we have (gj)T (f +
∑l

k=1 ykr
k) ≤ (gj)T f < hj . This will make the

inequality (gj)T x ≤ hj redundant, a contradiction. Now observe that
αe > 0. If not, then f + λre ∈ Pα ∀λ ≥ 0. However for suitably
large λ, (gj)T (f + λre) > hj which contradicts the fact that (gj)T x ≤
hj is valid for Pα. Now observe that if (gj)T (f +

∑l
i=1 riȳi) = hj

for some ȳ ∈ Rl
+ such that

∑l
k=1 αkȳk ≤ 1 (by non-redundancy of

inequalities, ȳ exists), then
∑l

k=1 αkȳk = 1. If not, then a point of the
form f +

∑l
k=1 rkȳk + εre belongs to Pα for a suitably small positive ε.

However, (gj)T (f +
∑l

k=1 rkȳk + εre) > hj , a contradiction. Let µ =
1− αi. Then observe that µ

∑l
k=1 αkȳk + αi = 1. Therefore the point

f+
∑l

k=1 rk(µȳk)+ri ∈ Pα. Therefore (gj)T (f+µ
∑l

k=1 rkȳk+ri) ≤ hj

or (gj)T (ri)
hj−(gj)T f

≤ 1− µ = αi.

Claim 2: If (gj)T f = hj , then ∀ x̄ ∈ S, ∃k 6= j such that (gk)T x̄ ≥ hk.
Choose a point belonging to Pα of the form f+εri ∈ Pα where ε > 0 for some
1 ≤ i ≤ l. Then (gj)T (f + εri) ≤ hj or (gj)T (ri) ≤ 0 ∀i. By assumption if
x̄ ∈ S, then x̄ ∈ f + cone(W ). Therefore (gj)T (x̄) = (gj)T (f +

∑l
i=1 λir

i) ≤
(gj)T f = hj . As Pα is S-free, if (gj)T x̄ < hj , then there must exist some
k 6= j such that (gk)T x̄ ≥ hk. Next we verify that if (gj)T (x̄) = hj then
∃k 6= j such that (gk)T x̄ ≥ hk. Assume by contradiction that there exists a
point x̄ ∈ S in the relative interior of the face Pα ∩ {x | (gj)T x = hj}. Then
there is a point of the form f+λ(x̄−f) ∈ Pα∩{x | (gj)T x = hj} where λ > 1.
However note that since x̄ ∈ S, min{∑l

i=1 αiyi | f +
∑l

i=1 riyi = x̄, yi ≥
0} ≥ 1. Thus, min{∑l

i=1 αiyi | f +
∑l

i=1 riyi = f + λ(x̄− f), yi ≥ 0} > 1 or
f + λ(x̄− f) /∈ Pα, a contradiction.

By Claim 2 whenever (gj)T f = hj , it is possible to drop the constraint
(gj)T x ≤ hj from the description of Pα and the resulting set remains S-free.
Thus let K be the set defined by the inequalities defining Pα only when
(gj)T f < hj . Now it follows from the definition of πK that

πK(ri) = max{j|(gj)T f<hj}

{
(gj)T (ri)

hj − (gj)T f

}
.

Thus the result follows from Claim 1. ¤
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5 Maximal S-free Convex Sets in R2 yielding Ex-
treme Inequalities for R(f, S)

We now consider the specific case of two rows. There are two main consider-
ations. The first is whether maximum lattice-free convex sets yield extreme
inequalities for R(f, S) when S 6= Z2. This is dealt with in Section 5.1. The
second is a classification of maximal S-free convex sets that yield extreme
inequalities and contain an integer point in their interior. This is treated in
Section 5.2.

5.1 Maximal Lattice-free Convex Sets in R2

Maximal S-free convex sets in R2 of order 0 are maximal lattice-free con-
vex sets. See Lovász [20] for a classification of these sets. Cornuéjols and
Margot [12] present the subset of maximal lattice-free convex sets that gen-
erate extreme inequality for R(f, S) when S = Z2. The next proposition
shows that their result holds for any maximal S-free polytope which is also
lattice-free.

Proposition 5.1 Let K be a full-dimensional maximal S-free polytope which
is also lattice-free. Then πK is extreme for R(f, S) if and only if πK is ex-
treme for R(f,Z2).

Proof: ⇒ Assume by contradiction that πK is extreme for R(f, S) and πK

is not extreme for R(f,Z2). Then there exist two different functions π1 and
π2 valid for R(f,Z2) such that πK = 1

2π1 + 1
2π2. However if π1 and π2 are

valid for R(f,Z2), then π1 and π2 are valid for R(f, S), thus contradicting
the extremality of πK for R(f, S).

⇐ Assume now that πK is extreme for R(f,Z2). Then P (πK) is either
a maximal lattice-free triangle or a maximal lattice-free quadrilateral sat-
isfying the ratio condition (see Cornuéjols and Margot[12]). In either case
let a1, a2, ..., ac (c ≤ 4) be the vertices of P (πK). Consider the problem
R(f,Z2, T ):

x = f +
∑

1≤i≤c

riyi

x ∈ Z2, yi ∈ R+ ∀i ∈ {1, ..., c},

where ri = ai − f . Since K is a maximal S-free polytope, there is at least
one integer point in the relative interior of each facet of K belonging to S.
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Let pj , 1 ≤ j ≤ c be the integer points (belonging to S) in the relative
interior of the facets of K. For both the cases in which P (πK) is a triangle
or a quadrilateral satisfying a ratio condition, Cornuéjols and Margot [12]
(see proofs of Theorem 3.8, 3.10) show that there exist c points yj ∈ Rc

+,
such that

1.
∑

1≤i≤c πK(ri)yj
i = 1 ∀1 ≤ j ≤ c,

2. pj = f +
∑

1≤i≤c riyj
i ∀1 ≤ j ≤ c,

3. The matrix [y1, y2, ..., yc] has a rank c.

Since the points pj belong to S as well, we have that y1, ..., yc are feasible
points for the problem R(f, S, T ) and satisfy πK at equality. Thus, from
(3.) above, there cannot exist two vectors π1 6= π2 such that (π1)T yj = 1
∀1 ≤ j ≤ c and πK |T = 1

2π1 + 1
2π2. Thus, πK |T is extreme for R(f, S, T ).

Therefore by Proposition 4.4, πK is extreme for R(f, S). ¤
Next consider the case where K is an unbounded maximal lattice-free

convex set, in which case K is a split set. In this case we obtain the following
result.
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Figure 4: Maximal S-free split set with at least two integer points on one
facet generate extreme inequalities.

Proposition 5.2 Let K := {(x1, x2) ∈ R2 | a0 ≤ a1x1 + a2x2 ≤ a0 + 1}
where g.c.d(a1, a2) = 1, and let K be a maximal S-free convex set. Then πK

is extreme for R(f, S) if and only if at least one of the facets of K contains
two points belonging to S in its relative interior.
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Proof: ⇒ Let K have at least two integral points on one facet and one
integral point on the other facet. Let p1 and p2 be two different integer
points on one facet and p3 be the integer point on the second facet of K.
(See Figure 4 for an example). Consider the finite problem R(f, S, T )

x = f + r1y1 + r2y2 + r3y3 + r4y4

x ∈ S, yi ≥ 0∀i ∈ {1, ..., 4},

where r1 is the vector (a2,−a1), r2 is the vector p3−f , r3 is the vector p1−f ,
and r4 is the vector (−a2, a1). The two cones C1 and C2 corresponding to
the two facets of K are generated by r1, r2, r4 and r1, r3, r4 respectively.
Now note that πK(r1) = 0, πK(r2) = 1, πK(r3) = 1, and πK(r4) = 0. Also
note that p2 = f + αr1 + r3 where α > 0, p1 = f + r3, p3 = f + r2, and
p2 = f + (1 + α)r1 + r3 + r4. Therefore the following points are satisfied at
equality for the inequality πK(r1)y1 +πK(r2)y2 +πK(r3)y3 +πK(r4)y4 ≥ 1:

1. (y1, y2, y3, y4) := (α, 0, 1, 0)

2. (y1, y2, y3, y4) := (0, 1, 0, 0)

3. (y1, y2, y3, y4) := (0, 0, 1, 0)

4. (y1, y2, y3, y4) := (1 + α, 0, 1, 1).

Note that as α > 0, the four points above are linearly independent. Thus the
inequality πK(r1)y1+πK(r2)y2+πK(r3)y3+πK(r4)y4 ≥ 1 cannot be written
as a convex combination of two different inequalities valid for R(f, S, T ).
Therefore by Proposition 4.4, πK is extreme for R(f, S).

⇐ Let there be exactly one integer point on each facet, namely p1

and p2. Then K ∩ conv(S) is bounded since otherwise rec.cone(conv(S)) ∩
rec.cone(K) 6= ∅, which implies that at least one of the directions (a2,−a1),
(−a2, a1) belongs to the recession cone of conv(S). Then there must exist
at least two integer points on each of the facets of K belonging to S.

Since K ∩ conv(S) is bounded it can be verified that there exists ε1 > 0
such that for all 0 ≤ ε < ε1 the set K1(ε) := {(x1, x2) ∈ R2 | (a1+ε)p1

1+(a2−
ε)p1

2 ≤ (a1 + ε)x1 + (a2 − ε)x2 ≤ (a1 + ε)p2
1 + (a2 − ε)p2

2} is S-free. Similarly
there exists ε2 > 0 such that for all 0 ≤ ε < ε2 the set K2(ε) := {(x1, x2) ∈
R2 | (a1− ε)p1

1 +(a2 + ε)p1
2 ≤ (a1− ε)x1 +(a2 + ε)x2 ≤ (a1− ε)p2

1 +(a2 + ε)p2
2}

is S-free. Let ε0 = 1
2min{ε1, ε2} and set K1 := K1(ε0) and K2 := K2(ε0).

Now it can be verified that πK = 1
2πK1 + 1

2πK2 . ¤
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5.2 Maximal S-free Convex Set with at least One Integer
Point in its Interior

We next analyze the case where K is a full-dimensional S-free convex set
such that K ∩ conv(S) is bounded1 with at least integer point belonging to
its interior. By Corollary 3.2, K has at most three facets.

We prove the following result in this section.

Theorem 5.1 (Classification) Let K be a full-dimensional maximal S-
free convex set in R2 with at least one integer point in its interior and let
K ∩ conv(S) be bounded.

1. Order of K:

(a) If πK is extreme for R(f, S), then the order of K is at most 2.

(b) If K is not a half-space and πK is extreme for R(f, S), then the
order of K is at most 1.

2. Number of facets of K:

(a) If K is a half-space, then πK is extreme for R(f, S) if and only
if bnd(K) contains at least two points belonging to S.

(b) If K has two facets, then πK is extreme for R(f, S) if and only
if one of the facets of K contains at least two points belonging to
S.

(c) If K has three facets, then πK is extreme for R(f, S).

We analyze the three cases based on the number of facets of K in the next
three subsections, thereby proving Theorem 5.1.

5.2.1 K has one facet

Proposition 5.3 ((2a.) of Theorem 5.1) If K is an S-free half-space in
R2, then πK is extreme for R(f, S) if and only if bnd(K) contains at least
two points belonging to S.

Proof: ⇒ Let the two integer points belonging to S∩bnd(K) be p1 and p2.
Let r1 = p1− f , r2 = p2− f and r3 be any vector of the form −λ1r

1− λ2r
2

1This is essentially a method to incorporate assumption (2) of Proposition 6.3. We do
not consider the case where this condition is absent.

21



−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

S

gTx ≥ b

Figure 5: A one facet maximal S-free convex set with one tight integer point
on its boundary does not generate an extreme inequality.

where λ1, λ2 > 0. Note that since f /∈ bnd(K), we obtain that r1, r2, and
r3 span R2 (This is C1). Consider the mixed integer set

x = f + r1y1 + r2y2 + r3y3

x ∈ S, yi ≥ 0∀i ∈ {1, 2, 3}. (3)

By Proposition 4.4, if the inequality

πK(r1)y1 + πK(r2)y2 + πK(r3)y3 ≥ 1 (4)

is extreme for (3), then πK is extreme for R(f, S). The following points are
satisfied at equality for (4):

1. (y1, y2, y3) := (1, 0, 0)

2. (y1, y2, y3) := (0, 1, 0)

3. (y1, y2, y3) := (2, 1, λ1 + λ2)

As the above three points are linearly independent, (4) is an extreme in-
equality for (3).

⇐ Let K be the set {x ∈ R2 | gT x ≥ b}. By assumption there is only
one integer point p = (p1, p2) belonging to S on the boundary of K. Since
by assumption K ∩ conv(S) is bounded, there exists ε > 0 such that the
set {x ∈ R2 | (g1)T x ≥ b} and {x ∈ R2 | (g2)T x ≥ b} are also S-free where
g1 := g + ε(−p2, p1), g2 := g − ε(−p2, p1), and ε > 0. (See Figure 5 for an
example). Now the result follows. ¤
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Proposition 5.4 ((1a.) of Theorem 5.1) Let K be a full-dimensional S-
free convex set in R2 with at least one integer point in its interior such that
K ∩ conv(S) is bounded. If πK is extreme for R(f, S), then the order of K
is at most 2.

Proof: By Lemma 3.1, a maximal S-free polyhedron that contains at least
one integer point in its interior has an order of at most 3. If K is of order
3, then it must be a half-space. Using Lemma 3.1, it is possible to add 3
hyperplanes to the description of K to make it into a maximal lattice-free
quadrilateral K̃. Also the integer points belonging to S that are tight on
the boundary of K remain tight at the boundary of K̃. However, since K̃
is a maximal lattice-free quadrilateral, K̃ has only one integer point on the
boundary of each facet (see Lovász [20]). Therefore bnd(K) contains only
one integer point belonging to S in the relative interior of each facet. Now
by Proposition 5.3, the result follows. ¤

5.2.2 K has two facets

The proof of the next proposition is similar to that of Proposition 5.2.

Proposition 5.5 ((2b.) of Theorem 5.1) Let K be a full-dimensional
maximal S-free convex set in R2 with two facets. Then πK is extreme for
R(f, S) if and only if one of the facets of K contains at least two integer
points belonging to S.

Proposition 5.6 ((1b.) of Theorem 5.1) Let K be a full-dimensional
maximal S-free convex set in R2 with at least one point belonging to S in its
interior such that K ∩ conv(S) is bounded. If K is not a half-space and πK

is extreme for R(f, S), then the order of K is at most 1.

Proof: Since K is not a hyperplane, K has two or three facets. It K has
three facets, it must be of order 1. Otherwise, by Lemma 3.1 we obtain that
if K is order of 2, it is possible to add 2 inequalities to the description of K to
make it into a maximal lattice-free quadrilateral K̃. Also the integer points
belonging to S that are tight on the boundary of K remain tight at the
boundary of K̃. However, since K̃ is a maximal lattice-free quadrilateral, K̃
has only one integer point on the boundary of each facet (see Lovász [20]).
Therefore bnd(K) contains only one integer point belonging to S in the
relative interior of each facet. Now the result follows from Proposition 5.5.
¤
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Figure 6: Three facet maximal S-free convex sets generate extreme inequal-
ities.

5.2.3 K has three facets

Proposition 5.7 ((2c.) of Theorem 5.1) Let K be a three-facet maxi-
mal S-free convex set. Then πK is an extreme function for R(f, S).

Proof: There are two cases: K is bounded or unbounded. Consider the
unbounded case first.

Let K − f = {x ∈ R2 | (g1)T x ≤ 1, (g2)T x ≤ 1, (g3)T x ≤ 1} and let r1

and r2 be vertices of K − f satisfying (g1)T r1 = (g2)T r1 = 1 and (g2)T r2 =
(g3)T r2 = 1. Let r3 be a ray of K − f satisfying (g1)T (r3) = (g2)T (r3) < 0.
Consider the mixed integer set

x = f + r1y1 + r2y2 + r3y3

x ∈ S, yi ≥ 0∀i{1, 2, 3}. (5)

(See Figure 6 for an example). Note that C1 is generated by r1, r3; C2 is
generated by r1, r2; and C3 is generated by r2, r3. Let pk be an integer
point in the relative interior of the facet {x + f ∈ R2 | (gk)T x = 1} of K.
Now it is easily verified that the following points:

1. (y1, y2, y3) := (α, 1− α, 0) (where 0 < α < 1 and p2 = f + αr1 + (1−
α)r2)

2. (y1, y2, y3) := (β, 0, γ) (where β, γ > 0 and p1 = f + βr1 + γr2)
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3. (y1, y2, y3) := (0, δ, ζ) (where δ, ζ > 0 and p3 = f + δr2 + ζr3)

satisfy the inequality π(r1)y1 + π(r2)y2 + π(r3)y3 ≥ 1 at equality. Since
∣∣∣∣∣∣

α 1− α 0
β 0 γ
0 δ ζ

∣∣∣∣∣∣
= −αγδ − (1− α)βζ 6= 0 (as 0 < α < 1, β, γ, δ, ζ > 0), (6)

we obtain that the three points are linearly independent. Thus π(r1)y1 +
π(r2)y2 + π(r3)y3 ≥ 1 cannot be obtained as a convex combination of two
different inequalities that are valid for R(f, S, T ) and therefore πK is extreme
for R(f, S) by the application of Proposition 4.4.

A similar proof can be presented for the case where K is bounded. In
this case, set r3 to be the third vertex of K − f . ¤

6 Concluding Remarks

Apart from the questions posed in Section 1, one important question is that
of generating valid inequalities for the set R(f, S,Rm, G) when G 6= ∅. This
is an important case since almost always some nonbasic variables are integral
and relaxing them to be continuous variables yields weak coefficients. Let
π : Rm → R be a valid inequality for R(f, S,Rm, ∅) and let S = Q ∩ Zm

where Q = ∩1≤j≤cQ
j and Qj = {x ∈ Rm | (aj)T x ≤ bj}. Let J be a critical

subset of {1, ..., c} for P (π) wrt to Q. Define φ : G → R as

φ(u) = inf{π(w) |w = u + x, x ∈ Zm, x ∈ rec.cone(conv(SQ,J ))}. (7)

(Remember SQ,J = (∩j∈JQj) ∩ Zm). It can be verified that (π, φ) yields a
valid inequality for R(f, S,Rm, G) of the form

∑

w∈Rm

π(w)y(w) +
∑

u∈G

φ(u)z(u) ≥ 1. (8)

The proof of validity is the following:

1. Since J is a critical set, P (π) is an SQ,J -free convex set. Therefore
π : Rm → R is a valid inequality for R(f, SQ,J ,Rm, ∅).

2. Since the set M := rec.cone(conv(SQ,J )) ∩ Zm is a monoid, i.e.,
0 ∈ M and M is closed under addition, by application of Theo-
rem 1 from Balas and Jeroslow [5], (π, φ) yields a valid inequality
for R(f, SQ,J ,Rm, G).
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3. Since SQ,J ⊇ S, R(f, SQ,J ,Rm, G) is a relaxation of R(f, S,Rm, G).
Therefore (π, φ) yields a valid inequality for R(f, S,Rm, G).

However obtaining φ via (7) involves solving a MIP which may not always
be efficiently solvable. Understanding when φ can be obtained efficiently
and when φ yields strongest possible coefficients (see Dey and Wolsey [13]
for some cases when S = Z2) are interesting directions of research.
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Appendix 1

In Proposition 6.3 we show that full-dimensional maximal S-free convex sets
are polyhedral under some technical conditions. The proof presented here
essentially uses the same steps as used in Lovász [20] for the case in which
S = Zm.

It is convenient to deal with general lattices in this section. Let L ⊆
Rm be the full-dimensional lattice generated by the basis {q1, q2, ..., qm}
where qi ∈ Zm ∀ i ∈ {1, ..., m}. For the purpose of this section, define
S = {x ∈ L | (aj)T x ≤ bj , j ∈ {1, ..., c}} where aj ∈ Zm×1 and bj ∈ Z. Before
presenting the main result in Proposition 6.3, we present two preliminary
results in Propositions 6.1 and 6.2.

Proposition 6.1 Let K ⊂ Rm be a full-dimensional S-free closed convex
set. If d ∈ L is a direction in rec.cone(K) and rec.cone(conv(S)), then
K̂ := conv(K + ray(−d)) is also S-free.

Proof: Suppose d is a direction both in rec.cone(K) and in rec.cone(conv(S)),
i.e., dT aj ≤ 0 ∀j ∈ {1, ..., c}. We need to show that if q′ ∈ int(K̂) \K then
q′ /∈ S. Assume by contradiction that there exists q ∈ K and λ > 0 such
that q + λ(−d) ∈ (int(K̂) \K) ∩ S.

Claim: q + µd ∈ int(K) ∀µ > 0. Clearly q + µd ∈ K, since q ∈ K and
d ∈ rec.cone(K). If ∀u ∈ Rm, ∃ε > 0 such that q + µd + εu ∈ K, then
q + µd ∈ int(K) (as K is convex). Therefore assume by contradiction that
there exists a vector u ∈ Rm such that

q + µd + εu /∈ K ∀ε > 0. (9)

Since q − λd ∈ int(K̂), there is a ε0 > 0 such that q − λd + ε0u ∈ K̂. If
q − λd + ε0u ∈ K, then q + µd + ε0u ∈ K; a contradiction to (9). Therefore
by definition of K̂ there exists a point v ∈ K and scalar γ ∈ R+ such that
v − γd = q − λd + ε0u. If γ − λ ≤ µ, then q + µd + ε0d ∈ K which is a
contradiction to (9). If γ − λ > µ, then the point (1 − µ

γ−λ)q + ( µ
γ−λ)v =

q + µd + ε0µ
γ−λu ∈ K which is a contradiction to (9) since ε0µ

γ−λ > 0.
Now consider the point q + (dλe − λ)d. Since (dλe − λ) ≥ 0, by the

previous claim, q+(dλe−λ)d ∈ int(K). Since by assumption q−λd ∈ S, we
obtain that (q − λd) + (dλe)d ∈ S (as dλed ∈ L and d ∈ rec.cone(conv(S))).
This is a contradiction to the fact that K is S-free. ¤

Observation 6.1 Let K be a S-free convex set. Let d ∈ L be a recession di-
rection for both K and conv(S). Let Ld, Sd, and Kd be the projections of L,
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S, and K on the linear space orthogonal to the direction d. If ∃G ⊂ lin(Ld)
such that G ⊇ Kd and G is an Sd-free convex set, then G + cone{d,−d} is
a S-free convex set and contains K.

Proposition 6.2 Let P ⊆ Rm be a rational polyhedron and K ⊂ Rm be a
closed convex set such that P ∩ K is bounded and full-dimensional. Then
there exists a polyhedron Q ⊂ Rm such that P ∩Q is bounded and K ⊆ Q.

Proof: If P is bounded, the result is obvious. Now consider the case where
P is not bounded. Take any point q in the interior of K ∩ P . Draw rays
starting from q in all the directions in rec.cone(P ). For any given ray q+λd,
λ ≥ 0 there exists a point p = q + λ̂d (i.e., p is on the ray) such that
p ∈ P and p /∈ K since P ∩ K is bounded. By the separation theorem
for convex sets (Rockefeller [21]) it is possible to construct a half-space
Hd := {x | (gd)T x ≤ hd} such that (gd)T p = hd and K ⊆ Hd. Let H be
the set of all such half-spaces. Clearly, K ⊂ ∩Hd∈HHd and (∩Hd∈HHd)∩ P
is bounded. The proof is complete if it is shown that there exists a finite
subset H̃ of H such that (∩Hd∈H̃Hd) ∩ P is bounded. Since P is a closed
set its recession cone is a closed set. Consider the closed and bounded set
B = {x ∈ Rm | ||x|| = 1, x ∈ rec.cone(P )}. Corresponding to a half-plane
Hd := {x | (gd)T x ≤ hd}, consider the open subset Od of B defined as
B ∩ {x | (gd)T x > 0}.

Claim 1: ∪Hd∈HOd is an open cover of B. For any r̄ ∈ B, we show that
some Od covers r̄. By construction there exists a hyperplane Hd ∈ H such
that (gd)T (q + λr̄) = hd, for some λ > 0, and K ⊆ Hd. Since q ∈ int(K),
we obtain (gd)T q < hd or equivalently (gd)T r̄ > 0. Therefore Od covers r̄.

Claim 2: Let H̃ ⊂ H. If ∪Hd∈H̃Od covers B, then (∩Hd∈H̃Hd) ∩ P is
bounded. Let r be any non-zero vector in the recession cone of P . Then
r̄ := r

||r|| belongs to B. Let an element of Hd ∈ H̃ that covers r̄. Thus
(gd)T r̄ > 0 or (gd)T r > 0. Therefore r is not a vector in the recession cone
of Hd∩P . Thus no vector of the recession cone of P belongs to the recession
cone of (∩Hd∈H̃Hd) ∩ P . Since the recession cone of (∩Hd∈H̃Hd) ∩ P is a
subset of the recession cone of P , this proves the result.

Now since B is closed and bounded, it is a compact set (Heine-Borel
theorem). Since ∪Hd∈HOd is an open cover of B, there exists a finite subset
H̃ of H that covers B. Now using Claim 2, (∩Hd∈H̃Hd) ∩ P is bounded,
which completes the proof. ¤

Proposition 6.3 Let S = {x ∈ L | (aj)T x ≤ bj , j ∈ {1, ..., c}} where L
is a full-dimensional lattice in Rm. Let K be a full-dimensional S-free
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convex set with the property that (1) K ∩ conv(S) is full-dimensional and
(2) if rec.cone(K ∩ conv(S)) ) {0}, then there exists d1, ..., dt ∈ L such
that d1, ..., dt ∈ rec.cone(K ∩ conv(S)) and lin{d1, ...dt} = lin(rec.cone(K ∩
conv(S))). Then K is a maximal S-free convex set if and only if it is a
polyhedron that contains at least one point of S in the relative interior of
each facet.

Proof: ⇒ Let K be a full-dimensional maximal S-free convex set satisfying
(1) and (2).

Claim 1: K is a polyhedral set. We first construct an S-free polyhedron
containing K to prove that K is a polyhedral set. For every v ∈ S, let
Hv be a half-space that contains K and contains v on its boundary. (This
can be done since K is convex; separation theorem of convex sets). Clearly
K ⊆ ∩v∈SHv. Moreover, none of the points in S are contained in the interior
of ∩v∈SHv. If S is a finite set, this shows that K is a polyhedron.

If S is not a finite set, we need to show that there is a finite subset
F of S such that K ⊆ ∩v∈F Hv. If the intersection of rec.cone(K) and
rec.cone(conv(S)) is non-empty, then by assumption there is d1, ..., dt ∈ L
such that d1, ..., dt ∈ rec.cone(K∩conv(S)) and lin{d1, ...dt} = lin(rec.cone(K∩
conv(S))). Then by Proposition 6.1 and by the fact that K is a maxi-
mal S-free convex set, −d1, ...,−dt belong to rec.cone(K). Let Ld, Sd,Kd

be the projection of L, S, K respectively on the linear space orthogonal
to d1. Clearly, Kd is an Sd-free convex set and Kd, Sd satisfy assump-
tions (1) and (2) of the proposition. By repeating this process t times,
we obtain a lattice L̃ and a convex set K̃ that is a maximal S̃-free con-
vex set (by Observation 6.1) such that there exists no direction d belong-
ing to both rec.cone(K̃) and rec.cone(conv(S̃)). Therefore conv(S̃) ∩ K̃ is
bounded. Now using Proposition 6.2 we obtain that there exists a polyhe-
dron Q such that Q ∩ conv(S̃) is bounded and K̃ ⊂ Q. Since Q ∩ conv(S̃)
is bounded, there exists a finite number of points v ∈ (Q ∩ S̃). Therefore
K̃ ⊂ (∩v∈(Q∩S̃)H

v)∩Q. Also the set (∩v∈(Q∩S̃)H
v)∩Q is S̃−free. Therefore

by maximality K̃ = (∩v∈(Q∩S̃)H
v)∩Q and consequently K is a polyhedron.

Claim 2: Every facet of K contains a point belonging to S in its relative
interior. We show that K̃ constructed in the proof of Claim 1 contains a
point belonging to S̃ in its relative interior (When S is finite, the proof is the
same). Suppose a facet F := {x|gT x ≤ h} of K̃ does not contain any point
of S̃ in its relative interior. Then there exists a ε > 0 such that replacing F
by gT x ≤ h + ε in the description of K̃ creates a set that also contains no
point of S̃ in its interior (since K̃ ∩ conv(S̃) is bounded). This contradicts
the maximality of K̃. Since K̃ is a polyhedron with one point of S̃ in the
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relative interior of each facet, we obtain that K is a polyhedron that con-
tains at least one point of S in the relative interior of each facet as each of
the projection directions belonged to L and belonged to the recession cone
of K and conv(S).

⇐ Suppose K is a full-dimensional S-free polyhedron {x ∈ Rm | (gj)T x ≤
bj , 1 ≤ j ≤ l} containing a point of S in the relative interior of each facet.
Suppose that K is not maximal. Then there exists a convex set K ′ which
strictly contains K and is S-free. However note that K ′ is completely con-
tained in each of the half-planes (gj)T x ≤ bj (since (gj)T x ≤ bj + ε contains
a point belonging to S in its interior for any ε > 0). This implies that
K ′ = K. ¤

Note that assumption (2) is required to prove that if K is a maximal
S-free convex set, then K is a polyhedral set. In the proof of the converse,
assumption (2) is not required.
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