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Abstract 
Financial derivatives are important hedging tool for asset’s manager. Electricity is by its very 
nature the most volatile commodity, which creates big incentive to share the risk among the 
market participants through financial contracts. But, even if volume of derivatives contracts 
traded on Power Exchanges has been growing since the beginning of the restructuring of the 
sector, electricity markets continue to be considerably less liquid than other commodities. This 
paper tries to quantify the effect of this insufficient liquidity on power exchange, by introducing a 
pricing equilibrium model for power derivatives where agents can not hedge up to their desired 
level. Mathematically, the problem is a two stage stochastic Generalized Nash Equilibrium and its 
solution is not unique. Computing a large panel of solutions, we show how the risk premium and 
player’s profit are affected by the illiquidity. 
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1. Introduction

Liquidity plays a crucial role in financial markets. It enlarges the capacity of the mar-

ket to accommodate order flows and guarantees the ability to quickly buy/sell sufficient

quantities of an asset without significantly impacting the price. Liquidity is among the

most important characteristics for asset managers who want to be sure that their port-

folio can easily be converted into cash. Insufficient liquidity, on the other hand, creates

new risks and frictions. The literature provides ample empirical evidence that liquidity is

an important state variable for asset pricing and that investors demand a higher return

from less liquid securities (see Pàstor and Stambaugh (2002); Amihud (2002) and the

cited literature).

Two important issues arise from insufficient liquidity. The first one is the empirical

proxy that is used to measure it. Liquidity is an unobserved variable that embeds sev-

eral dimensions, as volume, depth, resiliency and tightness1. The simplest proxies are the

volume of exchange and the bid-ask spread; but it is now recognized that those measures

are not fully appropriate. Many other measures, which relate the size of the trade to the

size of the price movement, have been proposed and explored. Hasbrouck (2005) provides

a comprehensive discussion of some interesting measures. The second issue concerns the

effect of insufficient liquidity on the pricing of financial contracts. Indeed, most pricing

models rely on the assumption of absence of arbitrage. This assumption is only sustain-

able in a very liquid market where arbitrageurs can instantaneously exploit all possible

mispricings. This does not hold for illiquid markets and hence such models might not be

applicable.

Power derivatives are important in restructured electricity markets because they per-

mit agents (producers, distributors, retailers) to hedge their strategy in a quite volatile

environment. There was substantial evidence of insufficient liquidity in the early days of

the restructured electricity markets(Newbery et al. (2003) and Newbery (2004)). Since

then, the volume of spot and derivatives contracts increased significantly but electricity

1for definitions of those concepts, see among O’Hara (1997); Kyle (1985)
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still remains considerably less liquid than other energy commodities (Table 8). Nowadays,

market operators or power exchanges regularly publish technical reports on the trade vol-

umes and number of active participants (e.g. Market Surveillance of EEX (2009)). But,

to our knowledge, no empirical study has really focused on the effects of a possible insuf-

ficient liquidity on the derivatives contracts. PJM (2007) recognizes that mature energy

markets will require increased forward trading in order to reduce risk and provide clear

price signals to support investment and hedging opportunities.

The pricing of financial power derivatives remains a challenging topic, even regardless

of liquidity problems. It is well recognized that the non-storability of electricity creates

non-hedgeable risks2. Also the time series of the underlying spot prices exhibit unusual

behaviors due to the idiosyncrasies of electricity. The demand of electricity is variable,

stochastic and price inelastic in the short term. These properties combined with the

finite capacity and technical characteristics of generators implies a particular spot price

dynamics that spikes to extremely high values. These jumps usually occur within a very

short period of time. Also, time series of power prices exhibit substantial mean reversion

and seasonality. Last but not least, the market is impacted by a very wide set of param-

eters, such as the fuel prices, power plants availability and network capacity.

Because of this complexity, researchers have developed so-called equilibrium-based

model with the goal of understanding the fundamentals of the power derivatives mar-

ket. The pioneering paper of Bessembinder and Lemmon (2002) analyzes the forward

market by assuming that the prices are determined by an economic equilibrium among

market participants (producers and retailers) rather than by speculation mechanisms.

The authors assume that market agents are risk-averse and hedge their stochastic profit

by optimizing their positions in financial contracts. This equilibrium model derives the

optimal strategies of these agents on the basis of their incentives to hedge. This leads to

the necessary volume of power derivatives at the equilibrium. Bessembinder and Lem-

mon (2002) find optimal hedge ratio3 roughly ranging from 0.8 to 1.2, depending on

2One cannot buy power on the spot (day-ahead) market, store it and re-sell it later.
3the hedge ratio is the ratio between the volume of future contracts and the expected production
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the market parameters. Producers and retailers massively buy/sell financial contracts in

order to minimize their risks. All studies based on this type of methodology conclude to

similar quantitative results. Such level of trades have never been observed on any power

exchange. Due to lack of liquidity, agents can not hedge their production and demand

at those levels.

The goal of this paper is to illustrate and quantify the effect of illiquidity in the power

exchange on power derivatives. To our knowledge this problem has not been explored

before. We construct a two stage stochastic equilibrium model of power derivatives in

a perfect competition market (agents are price takers) except for insufficient liquidity.

We define liquidity on the basis of the volume exchanged and study its impact by re-

stricting the volume of available derivative contracts. In this set up agents can not hedge

up to their desired level because their strategy sets are restricted by the action of the

others players. Mathematically, the problem is a Generalized Nash Equilibrium Problem

(GNEP) and its solution is not anymore unique. We illustrate the model on a 6-node

example taken from Chao and Peck (1998) and quantify the effect of illiquidity by com-

puting a large panel of equilibria and discussing their significance. The model involves

both generation and transmission markets. Empirical studies (Siddiqui et al. (2005);

Adamson and Englander (2005)) have yet pointed that the risk premia on transmission

contracts are unreasonably important and that the low liquidity of Financial Transmis-

sion Rights (FTRs) markets is one principal explanation. Shijie et al. (2005) shows that

certain market design, as the simultaneous feasibility rules, are also a plausible explana-

tion. This paper studies the impact of illiquidity in one market (here transmission rights)

on the other market (here energy).

The paper is organized as follow. We select a market design in section 2 and present

the corresponding model of the spot market. In section 3, we focus on equilibrium pric-

ing model in a perfect liquid market and cast the notion of absence of arbitrage in this

context. We show that a sufficient condition for eliminating arbitrage at equilibrium in

a perfect liquid market is to model the risk aversion by coherent (in the sense of Artzner

et al. (1999)) and ”equivalent” valuation function. In section 4, we quantify the impact
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of insufficient liquidity in power market. We present our model and address specifically

three topics arising from illiquidity. We first show that illiquidity allows for remaining

arbitrage possibilities at equilibrium. Secondly, we analyze a range of equilibria with

the view of quantifying the effect of illiquidity on the agents hedging strategies, profits

volatility and risk-premia. Finally, we focus our attention on illiquidity in the market of

financial transmission rights (FTRs) and show that illiquidity in one market (in this case

transmission) can drastically decrease the incentive to hedge in an other market (here

energy). We conclude in section 5.

2. Spot market equilibrium

2.1. Selecting a Market Design

The restructuring of electricity market has lead to many, sometimes quite different,

market designs. Following several authors, we here focus on a particular design where a

day-ahead market trades power for physical delivery on a spot market taking place the

next day. The spot market is based on an hourly auction with bids for purchase and

sale. This market is segmented geographically, and divided in several nodes of supply

or demand connected by transmission lines. Congestion management is a key element

in restructured electricity markets. The prices are defined at each node of the network

reflecting that only feasible bids, i.e. bids that comply with the limited capacity of the

network, can be accepted at different nodes. The nodal prices are called Locational

Based Marginal Prices (LBMP) and are calculated for each generation and load zone by

the System Operator (SO). In such system, the buyers pay the LBMP calculated at the

node in which they take delivery of electricity (or point of withdrawal :PoW) and sellers

receive the LBMP at the bus to which they supply (or point of injection :PoI).

This organization can be seen as an extremely stylized view of restructured US power

markets. The market design in EU countries is different where the most advanced real-

ization is still based on a separation between energy and transmission markets. Prices

are not defined at each bus but within a zone, which usually corresponds to the coun-

try/market. Congestion management is treated after the clearing of the energy market.
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The Power Exchanges that clear the energy market may first accept bids that are not

feasible for the transmission network. It is then up to the Transmission System Oper-

ators to correct the situation by redispatching and counter-trading operations. Usually

an asymmetric reward scheme is applied. The production units that are constrained off

still receive the remuneration from the energy market at the calculated spot price. The

production units that are constrained on obtain a price equal to their bids in the spot

market. While this procedure permits a price that is defined at a national level, it intro-

duces several inefficiencies. The adjustment creates extra cost that are supported by the

SO and pass through to the consumer after socialization. There is evidence (Ehrenmann

and Smeers (2004); Furió and Lucia (2009)) that it creates undesired incentives to game

the system and changes the trading strategies of market participants4.

2.2. The spot market model

We develop our analysis on an extremely stylized US like market because the integra-

tion of energy and transmission makes congestion management more transparent. This

integration of the energy and transmission operations also facilitates the quantification

of liquidity constraints on financial transmission contracts 5. We assume a perfectly com-

petitive spot electricity market. Stylized examples are widely used in the literature since

Hogan (1992)’s famous three nodes network. We follow suit and construct our arguments

on Chao and Peck (1998)’s six nodes example (Figure 1). We adopt both the model and

its numerical assumptions (see the original article for more discussion of that example).

Our description of the market is now standard. The power grid contains N buses and

L transmission lines. Each line � ∈ L is characterized by its impedance and has a thermal

capacity K�. Using the DC approximation of the AC load flow equations, every MW

injected (retrieved) at a generating (load) bus n is responsible for a power flow PTDFn,�

4Furió and Lucia (2009) show on the Spanish market that buyers respond by abandoning the daily
market in favor on the intraday as far as possible. In the seller’s part, their paper concludes that some
strategical power plants have incentives to submit their sales bids at high prices in order to not be
matched in the spot market but finally are required to produce to solve the transmission constraints.

5In Europe, there exist no FTRs defined at a national level, but on some cross-border interconnectors
(obtained by the so-called explicit auctions). Those explicit auctions are less important for the hedging
and also have the bad property that they do not ensure that the ow always goes from low price area to
the high price area (see Kristiansen (2007))
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Figure 1: 6-nodes network (Chao and Peck (1998))

on the line � ∈ L. The electrical network is controlled by a SO which is responsible for

its reliability. At each bus of the network, there is a single economic agent ν ∈ N which

can be a producer (ν ∈ Np) or a retailer (ν ∈ Nr). Producer have unlimited capacities;

they bid their marginal cost of supply Cν in the spot market. We assume furthermore

that the producer has no fixed cost and its total cost function CT
ν takes the following

form6.

CT

ν (qν) = aνqν + bν

q2
ν

2
; Cν(qν) = aν + bνqν (1)

Each retailer ν ∈ Nr serves the final consumers at its bus. It sells power at a fixed

retail price P r
ν . It bids its inverse demand function in the spot market which is also

assumed to be linear7.

Pν(qν) = aν − bνqν (2)

Table (1) reports the bids of the different economic agents.

6The model can easily be extended to more complex production function and production set restricted
by a limited capacity.

7One can easily extend the model to inelastic demand, which is probably a better representation of
actual markets. The computation of the spot equilibrium by maximizing the welfare becomes then the
minimization of the total cost for meeting the inelastic demand.
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Bus-ID Supply bids: Cν(qν)
1 10 + 0.05 q
2 15 + 0.05 q
4 42.5 + 0.025 q

Bus-ID Load bids: Pν(qν) P r
ν

3 37.5 - 0.05 q 33.6
5 75 - 0.1 q 61.7
6 80 - 0.1 q 62.6

Table 1: The 6-nodes example

The System Operator collects the bids in the spot market and maximizes the total

welfare leading to the following mathematical programming problem.

max
qν∈RN

+




�

ν∈Nr

� qν

0
Pν(ξν)dξν −

�

ν∈Np

� qν

0
Cν(ξν)dξν





s.t.
�

ν∈N

qν = 0

−K� ≤
�

ν∈N

PTDFν,� qν ≤ K�

(3)

The spot price P s
ν at each node ν is given by the marginal cost at a generating bus,

or by the inverse demand function at a load bus. The SO earns a spot profit πspot
so ( the

”merchandising surplus”) by collecting the transmission rents:

πspot

so =
�

�∈L

tr�(P s

�2
− P s

�1
) (4)

In this expression, tr� is the power flow on the line �. It can be derived from the in-

jections/withdrawals qν and the power distribution factor of the line. (P s

�2
− P s

�1
) is the

difference of prices at the end nodes of line �. The profits of producers/retailers on the

spot market are given by:

πspot

ν =





qν(P s

ν − CT
ν (qν)) if ν ∈ Np

qν(P r
ν − P s

ν ) if ν ∈ Nr

(5)
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2.3. Uncertainty and spot scenarios

We consider two types of uncertainties on the spot market. One is the final consumer

demand which is particularly sensitive to weather variation. We model this uncertainty

by a set of independent scenarios for the parameters aν of the load buses. Specifically

the load parameters aν varies from -25% to +25% (by step of 12.5%). So, a retailer faces

the stochastic demand of its final consumers. In the short term, the retail price P r
ν is

fixed. It is here set to 120% of the expected node price at which the retailer serves its

clients. The network availability is the second source of uncertainty. Transmission line

outages can seriously impact the spot equilibrium. We consider 2 contingencies: the no

default case occurs with probability of 90%. The outage of the line linking nodes 1 and

6 occurs with a probability of 10%. This leads to a total of 250 scenarios. We let ω

and pω denoting a scenario and its probability. Solving the equilibrium of the spot mar-

ket for the different scenarios we obtain the distribution of results summarized in Table 2.

Bus-ID: 1 2 3 4 5 6
Nodal prices:
- E

�
P s

ν

�
24.72 26.2 28.13 45.98 51.46 53.05

- Var
�
P s

ν

�
3.08 4.56 17.96 1.71 43.31 76.69

Market Agents:
- E

�
πspot

ν

�
2197 1300 652 345 1646 1979

- vol
�
πspot

ν

�
11% 37% 75% 56% 76% 87%

- CVaR75%

�
πspot

ν

�
1517 702 -83 86 78 -309

Table 2: Nodal price and agents profit statistics

E and Var in the table respectively denote expectation and variance. The statistic

”vol” measures the volatility of the profit; it is the ratio between the expectation and the

standard deviation. The conditional value at risk CVaRα is another risk measure that

represents the expected profit computed over the (1 − α) worst scenarios. While less

extensively used than the Value at Risk (VaR), the CVaR is more and more commonly

encountered in the literature. Figure (2) where the shaded area measures the CVaR

illustrates the concept.

9



Figure 2: Illustration of the CVaR

Table 2 shows that retailer profits are much more volatile than those of the producers.

More importantly, their CVaR75% (i.e. the conditional expectation of their profit in the

63 worst scenarios) are very low compared to the expected profits; they are even negative

for retailers at bus 3 and 6. The system operator collects the merchandising surplus on

transmission lines (see Table 9 in appendix A). The revenue accruing from operating a

line depends on the price difference at its two extremity buses. In our numerical simula-

tion, the line prices are more volatile than the nodal prices, reflecting the fact that the

demand in the three load buses are independent. Table 9 also shows the first and the

second moments of those prices. Not surprisingly, the transmission price between the

node 1 and node 6 is the most expensive and the most volatile, because those two nodes

are linked by a transmission line subject to outages.

3. Equilibrium pricing for financial contracts

The literature offers two main methodologies for pricing derivative products. One

approach resorts to risk neutral valuation and constitutes the most common approach

in financial mathematics. It is based on stochastic process models that capture the spot

price dynamics and serve to value power contingent claims. The other stream of the lit-

erature relies on economic models of power production and consumption. Bessembinder

and Lemmon (2002) were the first to introduce a two stage equilibrium model of the

power future market where market participants want to hedge their profit by contract-

ing a certain amount of futures before bidding in the spot market. Their methodology
10



has subsequently been used by several authors. Cavallo and Termini (2005) study the

benefits of introducing a market for standardized derivatives. Notably, they showed that

this market increases the share of the electricity purchased through the spot market and

diminishes the share of the bilateral contracts. Willems and Morbee (2008) quantify

how the introduction of power derivatives affects welfare and investment incentives .

Their computational results indicate that aggregate welfare in the market increases with

the number of derivatives offered and that investment decisions improve with increasing

market completeness because of decoupling of investment and speculation. Bülher and

Müller-Merbach (2008) extend the initial model of Bessembinder and Lemmon (2002)

to a dynamic equilibrium and derive an endogenous term structure of electricity futures

prices. Our model is part of this latter stream of literature.

By participating in the financial market, producers and retailers trade the risks in-

curred because of fluctuating spot prices, demand shocks and network congestion. They

have the opportunity to contract different financial derivatives (noted c), whose pay-off

is the difference between the derivative price P f
c and the corresponding realized pay-off

P s
c,ω (which is a known function of the spot market price). Letting xν

c be the position of

agent ν in contract c, the profit formula (equations 4 and 5) of agents (retailer, generators

and SO) become :

Πν,ω =






�
c
xν

c (P f
c − P s

c,ω) + qν,ω(P s
ν,ω − CT

ν (qν,ω)) if ν ∈ Np

�
c
xν

c (P f
c − P s

c,ω) + qν,ω(P r
ν − P s

ν,ω) if ν ∈ Nr

Πso,ω =
�

c
xso

c (P f
c − P s

c,ω) +
�

�∈L
tr�(P s

�2
− P s

�1
)

(6)

Agents are price takers in a perfectly competitive market. They can influence neither

the spot price, nor the price of the financial contract P s
c,ω in order to earn extra profit

from the trading. The outcome of the spot market is thus independent of the financial

portfolios of agents. One can first solve the equilibrium of the spot market and then

solve the equilibrium of the forward market on the basis of the obtained spot prices equi-
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libria. Notice that this simplification does not hold in a non-competitive environment

because forward decisions can influence the outcome of the spot market. Zhang et al.

(2009) propose a stochastic equilibrium model with equilibrium constraints (SEPEC) to

characterize the interaction between the two markets in a Cournot game.

Agents trade financial contracts because they are risk averse and want to hedge the

random profit earned in the spot market. We model this risk aversion by using the modern

approach of risk valuation (see Artzner et al. (1999) for the original risk measure concepts

and Shapiro et al. (2009) for their inclusion in a mathematical programming framework).

The original presentation is in terms of risk function8 ; because of the context we conduct

the discussion in terms of risk valuation. A risk valuation is a function ρ which maps

the space of risky payoffs (i.e. the set of all possible real-valued functions on Ω) into

the extended real line R̄9. Investor ν values his total portfolio according to the risk-

valuation of its outcomes distribution, let ρν(Πν)10. The problem of investor (producer

and retailer) ν can be formulated as:

Pν ≡ max
xν

c

ρν(Πν) (7)

where Πν,ω is given by equation 6.

The SO problem is slightly more complicated and is presented latter.

3.1. Risk valuation and arbitrage

Equilibrium pricing models are not based on the assumption of absence of arbitrage

but rather suppose that prices are determined by the economic equilibrium resulting from

the simultaneous maximization of agents risk valuation. If this equilibrium contains ar-

bitrage opportunities, outside speculators in a perfect liquid market will massively enter

the market and trade them away. We do not model these speculators (as explained

above, we exclude them from the transmission market) and hence cannot ex ante guar-

antee an arbitrage free equilibrium. It is however possible to guarantee the absence of

8in the context of minimization of loss.
9R̄ = R ∪ {+∞} ∪ {−∞}

10Mean-risk models are an important part of that framework. Agent maximizes his profit’s expectation
E

ˆ
Π

˜
accounting a measure D

ˆ
Π

˜
of the outcomes dispersion: ρ(Π) = E

ˆ
Π

˜
− κD

ˆ
Π

˜
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arbitrage at equilibrium by assuming that agents risk aversion is modeled by ”coherent”

and ”equivalent” risk valuation. By definition ”coherence” means that the risk valuation

satisfies axioms respectively noted concavity, monotonicity, translation equivariance and

positive homogeneity (see definitions in appendix B). A ”representation theorem” (see

Artzner et al. (1999)) states that every coherent risk valuation ρ can be represented as

an expectation taken with respect to the probability measure ζdP , where ζ belongs to

the subdifferential of ρ at 0.

ρν(Πν) = inf
ζν∈∂ρ(0)

Eζν [Πν ] (8)

”Equivalence” means that the probability measure associated with the risk measure (i.e.

of density ζdP ) is equivalent to the measure dP , that is, that both have the same set of

zero measure events.

When the market is perfect (i.e. no transaction cost or portfolio restriction), Pν

optimality condition implies that there exists a (at least one) probability measure, defined

by ζ∗νdP , under which prices are discounted martingales. In case of futures contracts,

payments are due at maturity and hence satisfy:

P f

c = Eζ∗ν [P s

c,k] (9)

According to the first theorem of finance, if this probability measure ζ∗νdP is equivalent

to the true one, then the market is arbitrage free. We call the probability measure ζ∗νdP

the agent’s risk neutral measure; it depends on the assumed risk valuation function and

the profit distribution of the agent. The probability measures ζ∗νdP are identical among

all players when the market is complete. Also, financially speaking, the density ζ∗ν can

be interpreted as the ”agent’s state prices” at equilibrium, i.e. how much a particular

agent values one unit of extra profit which only occurs for a particular state.

An equilibrium model where agents risk aversion is modeled with a non coherent

risk valuation might lead to solution with arbitrage opportunities. For example, mean-

variance, as used in Bessembinder and Lemmon (2002) or Willems and Morbee (2008), is

not coherent because it violates the positive homogeneity and monotonicity axioms. The
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absence of arbitrage in the equilibrium solution can be checked ex-post, by verifying if

the prices of the derivatives are strictly inside the convex hull of the spot payoffs of these

derivatives (in which case they can be expressed as expectations of the spot pay-offs in

some risk-neutral probability measures). The CVaR, which is growing in popularity in

the literature on electricity restructuring11 , is a coherent risk valuation but does not lead

to equivalent measures. Indeed, CVaRα is an expectation under a probability measure

which disregards profits greater than some threshold level that is only exceeded α of the

time. So it can also lead to equilibrium solution with arbitrage opportunities.

We model the agents risk aversion by a E-CVaRα,β , which is a weighted sum of the

expectation of the profit and a CVaRα.

E-CVaRα,β(Πν) = (1− β) E
�
Πν

�
+ β CVaRα

�
Πν

�
(10)

This function satisfies the four axioms of coherence and is also equivalent. Indeed, the

associated agent’s state prices are :

∂(E-CVaR)(Πν) =





ζν : E

�
ζν

�
= 1,

ζν,ω = (1− β) + βα−1 if Πν,ω < VaRα(Πν)

ζν,ω = (1− β) if Πν,ω > VaRα(Πν)

ζν,ω = (1− β) + [0, βα−1] if Πν,ω = VaRα(Πν)

One can see that the probability measure of density ζ∗νdP is equivalent to the true one

and defines the risk-neutral measure for the agent. For our computations, we set the

parameters β to 0.9 and α to 20%.

3.2. The model

We consider two types of financial derivatives. Energy futures are the most impor-

tant ones in terms of volume. An agent holding a long futures position receives the

difference between the energy spot price at maturity and the futures price. Forward

energy contracts do not exist for all nodes. Indeed, in order to enhance liquidity, en-

ergy futures markets are restricted to a few busses (the hubs). In order to allow agents

located at different nodes to mitigate congestion charges between their home node and

11see among Bartelj et al. (2010); Resta and Santini (2008); Gonzalez et al. (2007)
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the hub, properly designed electricity markets implement periodic auctions of financial

transmission right (FTRs). We therefore complement the 6-nodes spot market by assum-

ing forward energy and transmission trading where agents can trade energy futures and

point to hub FTRs contracts. We suppose that there is only one future energy contract

traded at node 6, which is the sole hub of the network. This situation is representative of

many U.S. market, where energy futures exist only for some hubs and not at each node

of the network. Considering node to hub FTRs contracts allows one to span all node to

node transmission risks.

The problem of producers and retailers was stated in (7). The description of the

behavior of the SO is slightly different. The SO is the ultimate counter party in the

transmission market. The SO initially auctions FTR contracts but wants to restrict

their set to a volume that is adequate and reliable for its congestion management. It

limits the total amount of auctioned FTR so that the corresponding flow on the lines

satisfies the N-1 rule12. Also, we assume that it does not take any futures energy position

on the hub (here node 6). The SO therefore sells FTR so as to maximize the risk valuation

of these FTR subject to the constraints N-1:

Pso ≡ max
xso

c

ρso(Πso)

−K� ≤
�

c
PTDFN-1

ftr,� xso

ftr ≤ K�

xso
energy = 0

(11)

Finding an equilibrium in the financial market means finding a tuple (xν
c , xso

c ,Pf
c )

such that, for each agent xν
c solves Pν (relation (7)), xso

c solves Pso (relation (11)) for

given price of the derivatives contract Pf
c , and such that the market clearing condition

holds:

�
ν
xν

c + xso
c = 0 (12)

The complete formulation of the equilibrium model is given in appendix C. It is a Nash

Equilibrium Problem (NEP); we show in this appendix how the problem can be solved

heuristically by a sequence of linear programming problems.

12That is must satisfy all the thermal lines limit under all singular lines outage.
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3.3. Simulation results

Table 3 reports the prices and volumes13 of the different derivatives at equilibrium.

P f
c and ”Volume” respectively denote the price and the trade volume of each contract.

P f
c − E

�
P s

c

�
is the risk premium embedded in the contract price. One first observes

the high trade volume. The quantity of energy futures at node 6 amounts to 82% of

the expected spot quantities. One also observes that the contracts with the highest risk

premium are also the most traded ones on the market. Those contracts are actually the

riskiest in term of pay-off and the most effective for agent in order to hedge their profit.

P f
c P f

c − E
�
P s

c

�
Volume (MW)

FUTURE 6 53.5 0.45 564
FTR 1→6 28.9 0.58 462
FTR 2→6 27.4 0.55 696
FTR 3→6 25.53 0.55 359
FTR 4→6 7.59 0.46 242
FTR 5→6 1.57 -0.01 94

Table 3: Equilibrium prices, risk premium and volume of the derivatives contract

The benefits of the derivative contracts for the players can be seen on table 4. The

volatility of the profit decreases considerably compared to the situation with the full ex-

position to the spot market (compare to table 2). The CVaR75% are closer to the expected

profits. Forward positions dramatically reduce the risk exposure of all agents with only

a small change in expected profit. This percussive impact of the derivatives for hedging

is illustrated in the figure, by comparing the cumulative distribution function (CDF) of

the spot profit (πspot

6,ω
) and the profit after hedging (Π6,ω) for the retailer located at the

node 6 (the hub).

These figures confirm results precedingly obtained by various authors. The current

treatment adds to that literature by the introduction of a transmission market and the

13The volume refers to the total quantity of MW sold/bought on the market.
14Cumulative distribution function of the profit : cdf(πν) = Prob(Πν ≤ πν)
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E
�
Πν

�
vol

�
Πν

�
CVaR75%

�
Πν

�

1 2198 1.8% 1517
2 1283 4.9% 1209
3 657 33% 329
4 349 17% 277
5 1602 49% 600
6 1890 48% 604

SO 11138 35% 6624

Table 4: Statistics of the market players total profit and cdf14 for the retailer at node 6

use of a coherent and equivalent risk measure to guarantee the absence of arbitrage. This

establishes a link between our approach and the more standard risk neutral valuation.

4. Insufficient Liquidity

To the best of our knowledge, the literature on contingent claim pricing in electricity

does not quantitatively discuss the effect of illiquidity on derivative contracts. Similarly

pricing models in that literature do not include illiquidity as a state variable. This is

surprising as it is indeed sometimes noted that insufficient liquidity can play a crucial

role in optimal management of a commodity portfolio (e.g. Geman and Ohana (2008)).

Indeed, while prices are commonly taken as exogenous variables in that literature15, the

positions in the portfolio are constrained by bounds that reflect the illiquidity. These

models implicitly assume that modifying the bounds to reflect illiquidity does not change

prices. Also, and as mentioned before, the literature of equilibrium models commonly

predicts high hedge ratio, even when agents are not very risk averse16. Our model, even

though it uses a different risk function, concludes similarly (Table 5). The problem is

15which assumption only holds surprisingly in very liquid market
16As mentioned previously, Bessembinder and Lemmon (2002) find an optimal hedge ratio varying

from 0.8 to 1.2, depending on the market parameters. In Willems and Morbee (2008)’s computation,
the total optimal number of futures goes up to 68GW when the expected demand is only 60 GW.
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that volumes such as those predicted by equilibrium models have never been observed

on any power exchange.

1 2 3 4 5 6
Hedge ratio 0.92 0.82 0.26 0.63 0.6 1.4

Table 5: Market player’s future position divided by his expected spot quantity

Illiquidity constrains the strategies of the agents and makes these hedge positions

impossible : agents cannot hedge their profit as they desire. We account for these preoc-

cupations by explicitly introducing constraints on hedging possibilities with the view of

assessing their impact on prices. We do so by imposing an upper bound on the volume

of each traded contract.

�

ν

|xν

c | ≤ Lc (13)

These constraints are shared by all players. In game parlance this implies that the set of

hedging strategies of a player is restricted by the hedging actions of the others(noted x−ν).

This suggests the following reformulation of the producers and retailers optimization

problem as:

Pν(x−ν) ≡ max
xν

c

ρν

�
Πν

�

s.t. Πν,ω =
�

c
xν

c (P f
c − P s

c,ω) + πs
ν,ω

|xν
c |+

�
−ν

|x−ν
c | ≤ Lc (λν

c )

(14)

We assume that only producers and retailers face those liquidity bounds. The SO has a

different liquidity problem as it issues financial transmission rights subject to a feasibility

constraint (N-1 rule) . The formulation of the SO problem remains as stated in (11).

The inclusion of these additional constraints transforms the problem into a Generalized

Nash Equilibrium Problem. The goal is to find a hedge tuple x∗ = (x∗,ν) such that x∗,ν

solves the problem of maximizing the risk valuation for each agent taking the hedging

strategies of the others as given. Any such tuple is called a Generalized Nash Equi-

librium(GNE). It is well known (e.g. Harker (1991)) that General Nash Equilibrium

Problems (GNEP) can be formulated as Quasi Variational Inequality problems(QVI).
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These may have multiple or possibly infinitely many solutions. This lack of uniqueness

is often interpreted as a serious difficulty that has limited the usefulness of the concept

as GNE. For this reason it has often been criticized by economists as a plausible solution

concept of a meaningful game. We take a quite different position and note that the

multiplicity of solutions reflects a fundamental feature of a market affected by liquidity

problems. Illiquidity is a market failure and the indeterminate outcome of the market is

a consequence of that market failure. With this remark in mind and given our practical

objective of illustrating the impact of the liquidity constraints on the equilibrium, we aim

at finding a large set of GNEs in order to assess the type of inefficiency that illiquidity

can lead to.

From a mathematical point of view, our model is a GNEP with shared constraints

(Rosen (1965); Fukushima (2008)), meaning that the liquidity constraint bears on all

market agents. This special class of problems has received increasing attention in re-

cent years. Unlike the NEP, there are only few methods available to compute GNEP.

Recently, Nabetani et al. (2008) introduced two algorithms based on parametrized VIs

related to the GNEP which, under a mild constraint qualication, allow one to find all

solutions of the GNEP. Fukushima (2008) also presents a new solution concept called

restricted GNE and proposes a heuristic control penalty algorithm to find them. In this

paper, we use the method presented in Nabetani et al. (2008) based on price-directed

parametrization. We randomly sample on the players shadow prices in order to obtain

different solutions. We compute up to 4000 equilibria for each case. The exact procedure

is explained in appendix E.

4.1. Illiquidity and arbitrage

Arbitrage opportunities are more likely to persist over time in illiquid markets. These

result from the difficulties confronted by arbitrageurs to exploit mispricing. For example,

Deville and Riva (2007) show for the case of option markets that arbitrages are tempo-

rary but that the speed of reversion to the no arbitrage situation is critically impacted by

liquidity-linked variables. Perfect liquidity and unconstrained portfolio formation are key

hypothesis to sustain the fundamental no-arbitrage assumption that most asset pricing
19



theories rely upon17.

This paper suggests that modeling illiquidity by shared constraints on tradable vol-

umes implies that the obtained equilibrium solutions may contain arbitrage opportuni-

ties, regardless of the risk valuation used to model agents risk aversion. Indeed, one can

show that using a coherent and ”equivalent” risk valuation, the optimality condition of

an agent restricted by shared constraints on the positions takes the form.

P f

c = Eζ∗ν [P s

c ] + λν

c (15)

The variable λν
c is the shadow price associated with the illiquidity constraint. In a

GNEP, this shadow price can differ by agents. These arbitrage opportunities may exist

in equilibria when the volume constraints are tight and when all agents are not able to

hedge up to the desired level (i.e. ∀ν, λν
c �= 0). No one can exploit the remaining ar-

bitrage as the volume constraint is tight . This is the market failure induced by illiquidity.

4.2. Market simulations

We impose two liquidity constraints, one on the volume of energy futures, the other

on the volume of FTRs. Those liquidity bounds can be justified by several factors. The

peculiarities of transmission contracts is certainly an important one when it comes to

FTRs. First this market is indeed organized through an auction which, because of the

physical feasibility restriction imposed by the SO, limits liquidity18. Secondly the number

of agents at each node is limited. Siddiqui et al. (2005) Adamson and Englander (2005)

pointed the high risk premium of the FTRs and that the low liquidity of FTRs markets

is one major explanation. For the case of Europe some power derivatives contracts are

not purely financial and hence are by construction physically limited19 .

17Recently, the theory has been adapted to tackle assets which dynamics changes with the order
balance. Çetin et al. (2004) extend the fundamental theorems of finance and show that the no-arbitrage
condition still implies the existence of a risk neutral measure, but that the perfect hedging, even for
complete market, does not hold anymore. One difficulty of applying the model is to quantify correctly
the asset’s dynamics with respect to the level of liquidity.

18There exist yet a secondary market, not regulated by the SO, where one can trade those contracts
through bilateral contract.

19For example, PHELIX futures traded on the European Energy Exchange (EEX) a physical delivery.
This is clearly a barrier for external speculators.
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We set the liquidity constraints on energy futures as a fraction of the expected total

power produced on the spot market. For the FTRs, this liquidity constraint is fixed to a

share of the total point to hub capacities. For a first scenario (noted LIQ66%), we assume

that the total of futures contracted at the hub does not exceed 66% of the expected total

production and the FTR’s volume is limited by the total capacity of the transmission

lines (summed over all lines of the grid). For a second scenario (noted LIQ33%), those

bounds are fixed to 33% and 50% respectively.

LIQ66% LIQ33%

P f
c Volume P f

c Volume
FUTURE 6

�
51.2 , 53.7

� �
33 , 457

� �
50.1 , 54.3

� �
17 , 228

�

FTR 1→6
�
26.8 , 29.1

� �
34 , 307

� �
25.4 , 29.2

� �
0 , 28

�

FTR 2→6
�
25.2 , 27.5

� �
2 , 262

� �
23.8 , 27.6

� �
0 , 232

�

FTR 3→6
�
23.3 , 25.8

� �
21 , 196

� �
21.9 , 26.2

� �
0 , 26

�

FTR 4→6
�
5.5 , 7.6

� �
125 , 140

� �
4.5 , 7.8

� �
0 , 179

�

FTR 5→6
�
1.4 , 2.1

� �
75 , 136

� �
0.9 , 3.2

� �
0 , 25

�

Table 6: Computed intervals for equilibria prices and volume of derivatives contracts)

Table (6) shows the range of contract prices and volumes found at equilibrium. These

ranges grow with the illiquidity sometimes leading to equilibria where the sign of the risk

premium changes compared to the perfect liquid case. Tables (10) and (11) in appendix

C show important statistics of the profit in the different equilibria. The agents profit

distribution can be severely impacted by insufficient liquidity. As can be seen from the

two scenarios studied, it may happen that each agent is excluded from the financial

trading. This corresponds to the worst hedging situation. Also, as the liquidity falls, the

intervals of the CVaR75%

�
Π

�
and vol

�
Π

�
(and obviously the volume) shrinks to a value

closer to the spot. Figures of the profit’s cumulative distribution function in table 12

indicates how the profit of retailer at the hub is impacted by the illiquidity.

4.3. Interdependence between transmission and energy markets

Surprisingly, the liquidity of the energy futures market is not always binding. Indeed,

because of the limited number of FTRs, players can not really hedge profits, which es-

sentially depend on the spot price at their home node. If they can not purchase those
21



FTRs, they have less incentive to take futures positions at the hub. The incredibly low

volume of 17MW is achieved when all Northern players are unable to buy any FTRs.

This interdependence between the energy and transmission markets is revealed in a

Volume FTRs Volume Futures P f
c

�
FUTURE 6

�

960 570 (92%)20
�
52.9, 53.6

�

720 478 (69%)
�
52.9, 53.7

�

480 320 (56%)
�
52.9, 53.8

�

240 269 (39%)
�
53.5, 54.0

�

0 152 (22%) 54.8

Table 7: Induced energy futures volume for a given liquidity bounds on FTRs

striking way in Table 7. It shows the maximum (over all computed GNEs) volume of

energy futures as a function of the bound (illiquidity) of FTRs. One clearly sees the

reduced incentive of agents to enter energy futures position when the illiquidity of the

FTR market increases. In the extreme situation, when no transmission market exists,

the volume of energy futures drops to 152 MW. One also notes that the maximal energy

futures price tends to be higher. This reflects the fact that producers, not located at

the hub, demand higher expected returns on the energy future, as they can less perfectly

hedge their profit (which depends highly on the congestion costs because of the lack of

FTRs).

5. Conclusions

In this paper, we have studied the impact of insufficient liquidity on the pricing

through an equilibrium based model. The problem is formulated as a Generalized Nash

Equilibrium problem and the solution is not unique. Computing a large panel of solutions,

we show that insufficient liquidity can dramatically impact the agents profit distribution

and that the risk premium may be more important in illiquid market. We show that

equilibrium models without speculation may have residual arbitrage opportunities and

identify two reasons why this is so. One is related to the notion of coherent risk valuation.

20The percentage of volume with respect to the expected quantities contracted in the spot market
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Modeling risk aversion through non coherent and equivalent risk valuation may lead to

arbitrage opportunities. These can be eliminated by allowing speculators in the market.

The second one is intrinsic to illiquidity and corresponds a market failure. Lack of

liquidity may create arbitrage opportunities. Through this paper, we rely on a definition

of illiquidity based on the volume. We leave to future research to explore the impact of

other measures such as bid-ask spread.
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A. Complementary figures and tables

Category Oil Natural Gas Coal Electricity

Physical
7730 7730 1990 1197

Suppliers

Physical 4836
2376 313

72
Wholesale Buyers + 321621 + 732520

Volume 7.6B barrels 22B MMBtu 1.1B short tons 3.8B MWh
(Physical) ($22B) ($152B) ($22 B) ($152 B)

Price Volatility 11% 29% 6% 66%

Table 8: Commodity Comparison (from PJM (2007))

21non-bulk data
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E
�
P s

�

�
Var

�
P s

�

�

1→3 3.4 20.4
1→2 1.5 5.9
1→6 28.3 85.2
2→5 25.3 47.9
2→3 1.9 6.0
4→6 7.1 65.4
4→5 5.5 32.4
5→6 1.6 27.7

E
�
πs

so

�
= 10, 965

CVaR75%

�
πs

so

�
= 6, 624

Table 9: Statistics of the transmission spot prices and cumulative distribution function for 1→6

E
�
Πν

�
vol

�
Πν

�
CVaR75%

�
Πν

�
Volume

1 [2116 , 2226] [1.8% , 22%] [1509 , 2160] [1 , 712]
2 [1220 , 1315] [3.1% , 37%] [697 , 1260] [0 , 551]
3 [628 , 743] [27% , 75%] [−83 , 444] [0 , 656]
4 [334 , 441] [14% , 79%] [−33 , 316] [17, 363]
5 [1583 , 1814] [44% , 76%] [78 , 711] [0, 590]
6 [1860 , 2502] [41% , 48%] [599 , 1003] [113, 677]

Table 10: Producers and retailers profits for LIQ66%

E
�
Πν

�
vol

�
Πν

�
CVaR75%

�
Πν

�
Volume

1 [2197 , 2960] [5% , 24%] [1480 , 2775] [0 , 546]
2 [1300 , 1973] [2% , 48%] [614 , 1905] [0 , 485]
3 [652 , 1173] [37% , 76%] [−83 , 418] [0 , 198]
4 [332 , 921] [13% , 250%] [−145 , 370] [0, 426]
5 [1577 , 2210] [42% , 76%] [78 , 838] [0, 571]
6 [1853 , 2655] [38% , 87%] [−308 , 1254] [0, 541]

Table 11: Producers and retailers profits for LIQ33%

25



Table 12: Range for the cumulative distribution function of the profit of for the retailer located at the
hub (left : LIQ66%, right: LIQ33%)

B. Risk-valuation and coherence

Let (Ω,F , P ) be a probability space (equipped with a sigma algebra F and a prob-

ability measure P ), Z := Lp(Ω,F , P ) be the set of all F -measurable functions Z such

that
�
Ω |Z(ω)|pdP (ω) < ∞. A risk valuation is a function ρ(Z) which maps Z into R̄.

In the context of maximization of a risk measure of an random reward , it is said that a

risk valuation is coherent if it satisfies the following axioms.

- Concavity: ρ(tZ1 + (1− t)Z2) ≥ tρ(Z1) + (1− t)ρ(Z2) ∀Z1, Z2 ∈ Z,∀t ∈ [0, 1]

- Monotonicity: If Z1, Z2 ∈ Z and Z1 � Z2, then ρ(Z1) ≥ ρ(Z2)

- Translation equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a

- Positive homogeneity: If t > 0 and Z ∈ Z, then ρ(tZ) = tρ(Z)
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C. Formulation and computation of the future equilibrium without liquidity
constraints

Following Rockafellar and Uryasev (2002) who show how the CVaR could be cast in

an optimization form, the problem of an agent maximizing a E-CVaR can be formulated

as:

Pν ≡ max
tν ,xν

c ,Uν,ω

�
βνtν +

�

ω

pω

�
(1− βν)Πν,ω − βνα−1

ν Uν,ω

�
�

s.t: Uν,ω ≥ 0

Uν,ω ≥ tν −Πν,ω (φν
ω)

Πν,ω =
�

c
xν

c (P f
c − P s

c,ω) + πspot
ν,ω

(16)

Applying the standard duality theory, one can convert the utility optimization problem

of the agents into the following optimality conditions. Equations 17-19 define the optimal

value of the state prices ζν,ω for all agents (i.e. retailers, producers and SO).

0 ≤ Uν,ω ⊥ βνα−1
ν + (1− βν)− ζν,ω ≥ 0 (17)

0 ≤ ζν,ω − (1− βν) ⊥ Uν

ω − tν +
�

c

xν

c (P f

c − P s

c,ω) + πspot

ν,ω ≥ 0 (18)

�

ω

ζν,ω = 1 (19)

Equations 20-21 impose that the SO’s forward strategy satisfies the rule of N-1.

0 ≤ µ+
�

⊥ K� −
�

f

PTDFN−1
c,�

xso

c ≥ 0 (20)

0 ≤ µ−
�

⊥
�

f

PTDFN−1
c,�

xso

c −K� ≥ 0 (21)

Finally,the following equations gives the price of the contract at equilibrium and the

market clearing condition.

P f

c =
�

ω

(pω ζν,ω)P s

c,ω (22)

P f

c =
�

ω

(pω ζso,ω)P f

c,ω +
�

�

(µ−
�
− µ+

�
)PTDFN−1

c,�
(23)

�

ν

xν

c = 0 (24)
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One can see from complementarity conditions (18) that the resulting Nash Equilibrium

Problem is non convex. We propose an heuristic to compute it by a sequential joint max-

imization method. Suppose that the equilibrium prices Pf
c are known. One can compute

the optimal strategies by solving the following linear problem (where Pf
c are fixed ).

Elp := max
�

ν∈{Nr,Np,SO}

�
βνtν +

�

ω

pω

�
(1− βν)Πν,ω − βνα−1

ν Uν,ω

�
�

Uν,ω ≥ 0

Uν,ω ≥ tν −Πν,ω

Πν,ω =
�

c
xν

c (P f
c − P s

c,ω) + πspot
ν,ω

−K� ≤
�

c
PTDFN−1

c,�
xso

c ≤ K� (µ−
�

, µ+
�
)

�
ν
xν

c = 0 (ηc)

The Karush-Kunh-Tucker optimality conditions of Elp are similar to the original NEP

except that P f
c is replaced by Pf

c and that equality (22) and (23) are changed to:

Pf

c + ηc =
�

ω

(pω ζν,ω)P s

c,ω (25)

Pf

c + ηc =
�

ω

(pω ζso,ω)P s

c,ω +
�

�

(µ−
�
− µ+

�
)PTDFN−1

c,�
(26)

One see that when the dual variables ηc are all equal to zero (i.e. given the derivatives

prices, no agent have incentive to modify its portfolio), then the solution of Elp is also

solution of the Nash Equilibrium. This lead to the following heuristic algorithm.

Require: δ > 0, Pf
c ∈ Rc

1: while � ≥ δ do
2: Solve Elp using lp
3: Pf

c ← Pf
c + ηc

4: � = ||ηc||
5: end while

D. Non-coherent risk measure

While mean-variance have been probably the most used risk function for modeling

risk aversion, it is not coherent and, in the context of pricing, it may lead to solution
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with arbitrage opportunities. This is highlighted by the following example. Consider a

market with 2 goods. The price of those goods are denoted (ps
1, p

s
2), which depend on

the state s of the world. We consider 3 possible state, each having a probability φs to

occur. There is a financial market where futures contract on those goods are traded.

Their futures prices are (P f

1 , P f

2 ).

s = sc1 s = sc2 s = sc3
φs 0.3 0.3 0.4
ps
1 1 1 2

ps
2 1 2 3.5

There are 2 agents yielding a stochastic profit (πs
a, πs

b
) depending on s. The profit of

agent a is positively affected by good 1 and negatively by good 2. The profit of agent b

is inversely impacted.

s = sc1 s = sc2 s = sc3
πs

a 45 31.67 50
πs

b
30 110 50

Cov(.,.) ps
1 ps

2

πs
a 2.8 3.6

πs

b
-4.8 2.4

Agents are risk averse and their utility is modeled by a mean-variance as risk measure

with a parameter α = 0.1.

ρ(Π) = E
�
Π

�
− αVar

�
Π

�
(27)

They trade future in order to maximize this risk measure. Intuitively, a, giving his

stochastic profit, have incentive to sell future 1 and buy future 2 and inversely for agent

b.

The equilibrium conditions are, as derived in Bessembinder and Lemmon (2002):

P f = E
�
ps

�
+

αaαb

αa + αb

�
i=a,b

Cov(πs
i
, ps) (28)

xf

i
=

Σ−1

αi

(pf − E
�
ps

�
)− Σ−1Cov(πs

i
, ps) (29)

The equilibrium solution are reported in the next Table. One can see that this solution
29



contains arbitrage opportunities22. Indeed, there exist no equivalent risk-neutral prob-

ability measure. Graphically, futures prices do not belong strictly to the convex hull of

spot prices.

Future 1 Future 2
P f 1.5 2
xf

a 109.1 -46.6
xf

b
-109.1 46.6

22Numerically, the strategy qf = (−1, 0.5) is an arbitrage opportunity. Notice that, as financial
contracts are futures, the payments are due at maturity.
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E. Formulation and computation of the future equilibrium with liquidity con-
straints

Choosing a E-CVaR, the problem of agent’s risk measure maximization, with shared

volume constraints, becomes:

Pν(x−ν) ≡ max
tν ,xν

c ,Uν,ω

�
βνtν +

�

ω

pω

�
(1− βν)Πν,ω − βνα−1

ν Uν,ω

�
�

s.t: Uν,ω ≥ 0

Uν,ω ≥ tν −Πν,ω

Πν,ω =
�

c
xν

c (P f
c − P s

c,ω) + πspot
ν,ω

xν
c ≤ yν

c (γ+
c,ν)

−xν
c ≤ yν

c (γ-
c,ν)

yν
c +

�
-ν y-ν

c ≤ Lc (λν
c )

(30)

The complementary conditions of this problem are quite similar to the previous prob-

lem. Equations 17 - 21 stay the same. One have to add the condition for the volume

constraints.

0 ≤ γ+
c,ν ⊥ yν

c − xν

c ≥ 0 (31)

0 ≤ γ-
c,ν ⊥ yν

c + xν

c ≥ 0 (32)

0 ≤ λν

c ⊥ Lc − yν

c −
�

-ν

y-ν
c ≥ 0 (33)

γ+
c,ν + γ-

c,ν = λν

c (34)

The equilibrium derivative prices are also changed into :

P f

c =
�

ω

(pω ζν,ω)P s

c,ω + γ+
c,ν − γ-

c,ν (35)
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As the shared constraints are separable, we compute the different GNE using the

parametrized Variational Inequality approaches described in Nabetani et al. (2008). We

construct a family of VIs that contains all the equilibria of the initial GNEP. We perturb

the initial objective function of agent by penalizing it by its financial volume with a

positive weight nν :

ρ̃ν(xν

c , yν

c ) = ρν(xν)−
�

c

nν

c yν

c (36)

We then compute the associate NEP, using the heuristic developed in appendix C. Ac-

cording to Nabetani et al. (2008), the equilibrium found is a solution of the initial GNEP

if:

�

ν,c

nν

c (Lc −
�

ν

yν

c ) = 0 (37)
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