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Abstract 
In this paper, we consider the management of the return flows of empty logistic containers that 
accumulate at the customer’s sites. These containers must be brought back to the factories in 
order to sustain future expeditions. We consider a network composed of several factories and 
several customers in which the return flows are independent of the delivery flows. The models 
and their solutions aim at finding to which factory the contain- ers have to be brought back and at 
which frequency. These frequencies directly define the volume of logistic containers to hold in 
the network. We consider fixed transportation costs depending on the locations of the customers 
and of the factories and linear holding costs for the inventory of logistic containers. The analysis 
also provides insight on the benefit of pooling the containers among different customers and/or 
factories. 
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1 Introduction

In this paper, we consider the management of the return flows of empty
reusable logistic containers, i.e. any kind of items used to store and send
goods (e.g. pallets, kegs, barrels, trestles,...) that must be brought back to
the producers for further expeditions. This problem is directly inspired by
the distribution of glass. In this real case, the glass is shipped to the cus-
tomer with special trucks and in special containers. At the customer site, the
glass is used according to the local demand. Once the customer has emptied
a container, this container can be folded. Later on, the folded containers are
brought back, with regular trucks, to the factories. In this example, the re-
turn flows are managed independently from the delivery flows because of the
differences in the timing of the flows and in the transportation modes (truck
specificities). In this paper, we also consider the return flows independently
from the delivery flows. The management of the return flows raises several
questions like

Q1: to which factory should each customer return the containers?
Q2: at which frequency should they be returned ?
Q3: how many containers are needed in the network?

These questions are interdependent. The link between Q3 and Q2 is
straightforward. For example, if we have few containers (Q3) then it is clear
that they must rotate quickly. This means that the returns will be, at least
on short distances, more frequent (Q2). The dependence with Q1 is more
complex. But we will show that, given a total inventory in the system (Q3),
the optimal allocation of customers to factories varies with the capacity con-
straint on the return flows, if any. However, we will also show that in some
cases the question (Q1) can be solved independently of (Q2) and (Q3).

This problem is, at the same time, a transportation problem (Q1) and
an inventory control problem (Q2 and Q3). The objective is to minimize the
costs. Here we consider holding costs for the containers and transportation
costs for bringing back the containers. The transportation costs are supposed
to be independent from the transported quantity. However, a capacity limit
may be imposed on the transport. We only consider point-to-point transport
and here discard milkruns.

In this paper, the problem is studied in a strategic perspective. Such a
perspective will allow us to compare the potential benefits associated with
different transportation capacity limits, with different holding cost rates. It
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will also allow us to quantify the benefit of merging different networks by
pooling the containers among different customers and/or different factories.

The paper is structured as follows. In Section 2, a detailed model of
the problem is suggested with a clear identification of the problem variables,
constraints and assumptions. In section 3, the relevant literature is reviewed
and our contribution is more precisely defined. The solutions of the problem
for increasingly complex cases are then detailed in Sections 4 to 7. Section
4 focuses on the “1-factory 1-customer” case while Section 5 deals with the
“1-factory C-customer” case. Since none of these cases raises the issue of
allocating customers to factories, we can simply focus on the analysis of the
optimal inventory of containers and on the optimal return frequencies, that
is, Questions Q2 and Q3. Not only can these two questions be analytically
solved but the benefit of pooling the containers among all the customers can
be quantified. The benefit is similar in the symmetric “F-factory 1-customer”
case which is quickly analyzed in Section 6. Finally, Section 7 deals with the
solution of the general “F-factory C-customer” case. We show there under
which circumstances question Q1 may (or may not) be solved independently
of Q2 and Q3. In each of these sections, we also consider the impact of a
potential capacity constraint on transportation. Finally, we will conclude the
paper by underlining the main contributions of the study and by discussing
a plan for future work.

2 The Model

Our problem can be modeled in its general form as follows:

min
(L,λf

c ,Q
f
c )

LHT +
∑

c∈C,f∈F

λfcTO
f
c

Qf
c

(2.1)

such that

∑
c∈C

λfc = Γf ∀f (2.2)∑
f∈F

λfc = Λc ∀c (2.3)

L =
∑

c∈C,f∈F

Qf
cλ

f
c

2Λc

+
∑

c∈C,f∈F

Qf
cλ

f
c

2Γf
(2.4)

Qf
c ≤ CAP ∀c, f (2.5)
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Our decision variables are: L, the total inventory of containers also called
the “Logistic inventory”; λfc , the rate at which customer c returns the con-
tainers to the factory f and Qf

c the lot size used by customer c to return the
containers to the factory f . The problem with a fixed logistic inventory L
instead of a variable one will also be studied. Note that C and F represent
the set of customers and of factories, respectively.

The objective is to minimize, over time T , the sum of the holding cost
and the transportation cost. The holding cost over time T is LHT where H
is the holding cost rate per container. For the transportation, the customer c
will organize, over time T , (λfcT/Q

f
c ) transports to the factory f , each at the

fixed cost Of
c . This leads to the total transportation cost. Note that since T

defines the period over which the cost is computed, we can set it equal to 1
without loss of generality.

The two first constraints express the demand and the supply. A factory
f requires for its further expeditions Γf containers per time unit. Constraint
(2.2) expresses that this demand must be exactly met by the sum of the
contributions of the customers to this factory f . Similarly, each customer c
releases containers at the global rate Λc. Constraint (2.3) expresses that this
global supply must be partitioned among the different factories.

The third constraint (2.4) is more complex. It expresses that the total
number of containers in the system L is given by the sum of the average
numbers of containers at each player of the system.

Let us consider a customer c. Containers are accumulated at the speed
Λc and then shipped to a given factory f with a lot size equal to Qf

c . The
quantity (λfc /Λc) represents the portion of time customer c is accumulating
containers for factory f . During this portion of time, the inventory varies
from 0 to Qf

c . The average inventory during this time is Qf
c /2. The average

inventory at customer c is therefore∑
f∈F

Qf
c

2

λfc
Λc

The first term of the right hand side of Equation (2.4) thus expresses the
sum of the average inventory over all the customer sites.

We hold a similar reasoning for the factories. Let us assume a factory f
has no containers left and just receives the lot size Qf

c sent by customer c. It
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will consume the received containers at the speed Γf . During this time, its
average inventory will be Qf

c /2. Since, the quantity (λfc /Γ
f ) represents the

portion of the time the factory f lives from the containers sent by customer
c, the average inventory at factory f is given by∑

c∈C

Qf
c

2

λfc
Γf

By summing up all the factories we obtain the total average inventory on the
factory sites. This is the last term of Equation (2.4).

The crucial assumption in the model is that we assume “perfect coordi-
nation”. That is, a customer c sends its containers to factory f when it has
reached its lot size Qf

c . On the other side, the factory f receives this lot size
Qf
c exactly when needed, that is, when its inventory has just dropped to zero.

This “perfect coordination” is discussed in more details in Section 5. This
assumption leads to the fact that the suggested solutions are optimistic and
they are sometimes referred to as lower bounds. At an operational level, a
special attention should thus be given to the issue of coordination. However,
at the strategic level, since we aim at comparing different solution schemes
and at drawing lessons from these comparisons, this assumption presents the
advantage of keeping the problem tractable without introducing obvious bi-
ases.

Finally, constraint (2.5) expresses the fact that there could be some limit
on the transport capacity. In this paper, we systematically address our prob-
lem with and without this constraint.

3 Literature Review and Detailed Contribu-

tion

The “1-factory 1-customer” case is shown to be an obvious EOQ problem.
The relevant literature dates back from Harris (1915). In the “1-factory C-
customer” case, all the customers send their containers back to the same
factory. The problem reduces to lot-sizing decisions based on linear holding
cost and fixed transportation costs that are intertwined with a global inven-
tory constraint or variable L that creates dependence between the different
lot sizes. Although this problem still looks simple, the difficulty comes from
the pooling of the containers at the factory. Indeed, it appears that if we
aim at minimizing the total inventory at the factory, then the arrivals of the
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customer shipments must be coordinated. On the other hand, each customer
has its own ideal lot size and therefore its own ideal shipment frequency. The
problem thus consists in the reconciliation of the customer shipment frequen-
cies with the arrival coordination at the factory. The only related literature
we found is that discussing the management of warehouse capacity. In this
problem, a warehouse with limited capacity manages an inventory of several
items which compete for that capacity. This problem known as the Single
Resource Multi-Item Inventory System (SRMIS) or Warehouse Scheduling
Problem (WSP) has some strong similarities with ours: every replenishment
has a fixed cost (every transportation in our problem has a fixed cost); the
demand faced by the warehouse has to be satisfied (the demand Γf at our
factory must be satisfied); there is a lot sizing issue for the replenishment
orders (we have a similar one for the transportation) and finally the ware-
house does not want to receive all the replenishments at the same time for
capacity reasons. Although our “1-factory C-customer” problem is different,
it leads to similar problems, models and solution methods. For the interested
readers, we review this literature in the next subsection.

Since the formulation of our“1-factory C-customer”problem leads to mod-
els similar to those analyzed in the (SRMIS) literature, our contribution does
not lie in the solution methods. It lies here in the modeling of our problem
and in the managerial interpretation of the results. Indeed, the benefit of
pooling the containers among the customers (or among factories in the “F-
factory 1-customer” case) can be clearly interpreted and quantified.

For the general “F-factory C-customer” case, no directly relevant litera-
ture has been found. Here, we develop the models and the solution methods.
The problem presents lot sizing and customer allocation decisions. Our solu-
tion methods rely on a decomposition into 2 problems. A first problem aim
at finding the optimal lot sizes while a second problem tackles the allocation
of the customer. We derive the managerial implications of this case and,
among others, analyze the impact of pooling in this context.

It is worth mentioning some recent work by Huang et al. (2005) who
have also dealt with an extension of EOQ-like models with multiple factories
and multiple customers. In this problem, lot sizing and customer allocation
decisions must also be taken. The objective function is, however, different.
It includes variable transportation costs and the main focus is on production
cost. Batch production campains have a fixed setup cost so that the allocation
of customers to a factory would reduce the amount of fixed cost to be paid.
In this problem, all items are produced at the same frequency at a factory
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and the setup cost is paid for the production of the batches of all items at the
factory. The solution method considers the same type of decomposition with
a lot sizing and an allocation problem. The resulting problems are, however
different, since the cost structure and the assumptions used are different. For
example, the problem of pooling and the perfect coordination assumption
have no equivalent in the model.

3.1 SRMIS and WSP literature

The problem of deciding on how much and when to replenish a capacitated
warehouse with multi-item has been analyzed in a continuous timeline fash-
ion and as a discrete time problem. If the timeline is continuous, the problem
is referred to as the Single Resource Multi-Item Inventory System (SRMIS).
In its discrete time form, it is known as the Warehouse Scheduling Problem
(WSP).

The continuous problem is an extension to the classical EOQ model dat-
ing from Harris (1915) and can be divided into 2 groups of problems. The
first group was referred to as the strategic SRMIS by Gallego et al. (1996).
In the strategic problem, the capacity limit is a decision variable and a third
cost, the capacity cost, is linked with this capacity which must be chosen as
to accommodate the maximum total stock volume held at the warehouse at
any time. The tactical SRMIS integrates the capacity limit of the warehouse
as a constraint. In both models, the literature has focused on two main el-
ements: deriving lower bounds on the total cost or on the maximum total
stock volume and designing heuristics to find feasible solutions.

In both problems, the heuristics basically face the same challenge : there
are quantities which are individually optimal for each item with respect to
the holding and the transportation costs, but the coordination of the re-
plenishments has an impact on the maximum total inventory volume, and,
consequently, on the capacity. It is obvious that, in the worst case, if no
effort is made on coordination, all replenishments could arrive at the same
time. It could be preferable to design a coordination pattern where the re-
plenishments are spread over time, in order to limit the maximum total cost
volume. This coordination has been referred to as the staggering problem in
the literature , which has been shown to be NP-complete by Gallego et al.
(1992). Lower bounds were given by Anily (1991) and Gallego et al. (1996).

Several families of approaches have been proposed. A first family of so-
lution procedures for the problem actually neglect the staggering problem,
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and consequently must consider that the maximum total stock volume is the
sum of stationary replenishment quantities. These procedures are referred
to in the literature as Independent Solutions (IS), and were first referenced
in Churchman et al. (1957), Holt (1958), Hadley and Whithin (1963) and
Parsons (1966).

The policies regrouped under the name Rotation Cycle Policies (RC) aims
at finding a common replenishment frequency t to all items. Once t has been
determined, the staggering of the orders is chosen in order to minimize the
maximum total stock volume during the cycle. Examples of such approaches
can be found in the works of Goyal (1974), Homer (1966), Krone (1964),
Maxwell (1964), Parsons (1965), Silver (1976), Zoller (1977) and Hall (1988).

Another family of procedures rely on a stationary frequency for each item,
i.e. each item is always replenished in the same quantity. This family is
named Stationary Order Sizes and Intervals (SOSI). The paper by Gallego
et al. (1996) suggests a heuristic for the staggering problem for SOSI policies.
Rosenblatt (1981) compares the two approaches. Haksever and Moussourakis
(2005) suggest a MIP formulation for finding SOSI policy with one or several
constraints.

The WSP is the discrete version of the SRMIS. The literature has also been
dominated by heuristics. Many of the heuristics proposed for the SRMIS are
easily extended to the WSP. Without entering in details, let us mention some
major contributions for the WSP: Gallego et al. (1996), Hariga and Jackson
(1996), Günther (1990), Dixon and Poh (1990), Page and Paul (1976) and
Axsäter (1980).

4 1-Factory and 1-Customer

The simplest case arises when a single factory deals with a single customer.
The customer accumulates empty units at a constant rate while the factory
consumes empty units at the same rate. Referring to our model notation, we
have here:

λ1
1 = Λ = Γ;

Q1
1 = Q = L
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And the problem reduces to a classical economic order quantity problem with
the following cost function :

min
Q

2
H +

Q

2
H +

Λ

Q
O

where the first term is the holding cost linked with the average inventory at
the customer, the second term is the holding cost linked with the average
inventory at the factory and the third term of the sum is the transportation
cost associated with Q. The holding cost grows linearly with the lot size,
while the transportation cost decreases as the lot size increases. Figure 1
shows the classical inventory evolution at the customer and at the factory,
while Figure 2 depicts the evolution of the total logistic cost with the lot
size. The optimal solution Q∗ is found by setting the first derivative of the

Figure 1: Inventory of empty logistic containers at the customer and at the
factory.

objective function to zero:

Q∗ =

√
ΛO

H

This quantity differs from the classical economic order quantity by a factor√
2. This is explained by the fact that we consider holding costs for the

inventory at the customer and at the factory. Otherwise, this quantity shares
similar characteristics with the classical EOQ, among others, the equality of
the holding and transportation costs and the relatively flat slope around the
optimal quantity. This leads to a total logistic cost of

V (Q∗) = 2
√

ΛOH

If there is a constraint on the transported quantities, then the optimal solu-
tion becomes

Q∗ = min{
√

ΛO/H,CAP}
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Figure 2: Cost structure and optimal lot size.

5 1-Factory and C-Customer

In this section, we consider a single factory having a set of C customers. Each
customer produces empty containers at a rate Λc and the factory consumes
them at a rate Γ =

∑
c∈C Λc. Referring to our model notation, we have here:

λ1
c = Λc

Q1
c = Qc

5.1 Variable L

5.1.1 Non-pooled containers

Let us first consider that each customer has its own specific type of logistic
units. The factory may only send this specific type to the corresponding
customer. In this case, it is straightforward to conclude that the problem
decomposes into C independent“1-factory 1-customer”problems. This means
that, for each customer, we have the optimal lot size given by

Q∗c(np) =

√
ΛcOc

H
(5.1)

where (np) just refers to the fact that the containers are not pooled among
the customers. The optimal logistic stock is then the sum of the lot sizes

L∗(np) =
∑
c∈C

Q∗c(np) =
∑
c∈C

√
ΛcOc

H
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and the optimal total logistic cost is

V ({Q∗c(np)}) = 2
√
H
∑
c∈C

√
ΛcOc

In this case, the factory must hold C different inventories, each being con-
sumed at a rate Λc, as illustrated on Figure 3 for 2 customers having optimal
lot sizes of 20 units.

Figure 3: 2-customers non-substituable containers flows.

5.1.2 Substitutable containers

Let us now assume that all the containers in the network are identical and
interchangeable. It does not change anything for the customers. However,
the factory may now pool all the received containers and consumes a whole
lot size Qc at rate Γ before requiring another lot size to be supplied. Figure
4 illustrated a case with 2 customers supplying lots of size 20 in a coordi-
nated way. Compared to the non-substitutable container case, this results in
a reduction of the average inventory at the factory of 10 units, while keeping
unchanged the transportation costs and the inventory costs at the customers.
In our example, each return flow arrives at the factory when its inventory

reaches 0. This is what we call perfect coordination. In theory, there is no
guarantee that such a coordination is achievable in all cases. However, our
own experiments have shown that almost perfectly coordinated strategies can
generally be found at the operational level. This is in line with the results
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Figure 4: Perfectly coordinated return flows.

in the SRMIS literature that have shown that there generally exist cost so-
lutions which are reasonably close to that of the ideal perfectly coordinated
case. We refer the reader to the literature on SRMIS for more insight on the
coordination issue.

In order to measure the potential benefit of pooling the containers, let us
consider three cases. In the first case, the containers are not substitutable.
In this case, a lot Qc induces an average inventory of Qc/2 at the customer
site and at the factory site. The total inventory at the customers is thus∑

cQc/2. The factory also holds
∑

cQc/2 containers on the average. In
the second case, let us assume that the containers are pooled but the lots
are systematically shipped simultaneously to the factory. The inventory at
the factory evolves then from

∑
cQc to zero, leading to the same average

inventory
∑

cQc/2 at the factory. There is therefore no gain in this situa-
tion compared to the non-substitutable case. Finally, let us consider perfect
coordination. Here, a lot size Qc induces still an average inventory of Qc/2
at the customer site but only an average inventory of (Qc/2)(λc/Γ) at the
factory site. Indeed, (λc/Γ) is the fraction of the time it takes the factory to
consume the containers from the lot Qc. The cost function in this case then
becomes

V ({Qc}) =
∑
c∈C

Qc

2
H +

∑
c∈C

Qc

2

Λc

Γ
H +

∑
c∈C

ΛcOc

Qc
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which leads to the following optimal lot sizes

Q∗c(ppc) =

√
2ΛcOc

H(1 + Λc

Γ
)

(5.2)

where (ppc) refers to the pooled with perfect coordination case. This leads to
a total inventory of

L∗(ppc) =
∑
c∈C

Q∗c(ppc)

2
(1 +

Λc

Γ
)

and an optimal cost of

V ({Q∗c(ppc)}) =
∑
c∈C

√
2ΛcOcH(1 +

Λc

Γ
)

Finally, note that the reasoning remains perfectly valid if some capacity con-
straint is imposed on the lot sizes. In this case, we would simply have

Q∗c(ppc) = Min

{
CAP,

√
2ΛcOc

H(1 + Λc

Γ
)

}

5.1.3 Comparison between the pooled and non-pooled cases

We have seen that the non-pooled and the pooled cases constitute two refer-
ences for the total logistic cost in our network. Both cases are decomposable
into independent subproblems for each c ∈ C. It is the assumption made on
the average inventory at the factory which differentiates the two problems.

In the (np) case, the optimal lot sizes are Q∗c(np) =
√

ΛcOc/H leading to
the optimal cost of:

V ({Q∗c(np)}) = 2
∑
c∈C

√
ΛcOcH

In the (ppc) case, the optimal lot sizes are

Q∗c(ppc) =

√
2ΛcOc

H(1 + Λc

Γ
)
≈

√
2ΛcOc

H(1 + 1/C)

where the last approximation assumes all customers have equal rates. This
leads to a total cost of

V ({Q∗c(ppc)}) ≈
∑
c∈C

√
2ΛcOcH(1 + 1/C)
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The ratio of the two costs is thus

V ∗(ppc)

V ∗(np)
≈
√

1 + 1/C

2

which is close to 70% if the number of customer C is not too small.

The managerial lessons are obvious. First, pooling can only be cheaper.
Indeed, a factory can delay its calls for containers as long as some are avail-
able. This means that the inventory at the factory side will remain very low
all the time. Delaying the calls for the lots will allow these lots to be larger
on the average, the transportation to be less frequent and the cost to be lower.

In terms of profit, pooling the containers can spare up to 30% of the cost
if perfect coordination can be achieved and if the network is not too small.
Such a saving is obtained by increasing the lot sizes by a factor of

√
2. This

increase allows to reduce the transportation frequencies by the same factor√
2. On the inventory side, at the customer the inventory is increased by

√
2

but this is compensated by the fact that a lot stays almost no time at the
factory side. Altogether, the inventory level is also reduced by a factor

√
2.

In the case the transportation is constrained by some capacity limit, the
profit of pooling could be reduced to the holding cost of the inventory at the
factory. Indeed, if all the lots sizes were already at their limit CAP in the
non-pooled case, then the only saving is the inventory at the factory.

5.2 Fixed L

5.2.1 Uncapacitated transportation

Let us consider the case where the total logistic inventory L is no more a
variable. Our problem reduces to:

min
Qc

∑
c∈C

ΛcOc

Qc

such that
L =

∑
c∈C Qc (5.3)

or

L =
∑

c∈C
Qc

2
+
∑

c∈C
Qc

2
Λc

Γ
(5.4)

This is now a transportation cost minimization problem. The link between
the lot sizes and the logistic inventory L is determined by the constraint (5.3)

14



in the non-pooled case and (5.4) in the pooled case with perfect coordination.
Intuitively, this problem is not too difficult. The objective function is separa-
ble and strictly decreasing with the lot sizes. The optimal lot sizes would be
determined independently if L was not given. Since L is given, the lot sizes
are chosen so that their marginal contributions to the objective function are
equal. Let us solve this problem mathematically for constraint (5.3) in order
to understand the solution mechanism. The procedure can be repeated for
the other case.

We first build the Lagrangian function

L =
∑
c∈C

ΛcOc

Qc

+ β[
∑
c∈C

Qc − L]

and then derive the first order optimality conditions{ ΛcOc

(Qc)2
= β ∀c ∈ C

L =
∑

c∈C Qc

which leads to the optimal lot sizes

Q∗c(np) =
L∑

d∈C
√
OdΛd

√
OcΛc

These optimal lot sizes are now linked together by the total available logistic
inventory L. Since the ratios between the lot sizes are independent of L,

Q∗c(np)

Q∗d(np)
=

√
ΛcOc√
ΛdOd

it is easy to define a first set of lot sizes on an arbitrary basis, e.g. fixing
Q∗d(np) = 1. Then, the resulting logistic inventory can be computed. If it is
not equal to L, all the lot sizes are scaled in order to reach the given L value.
The same process is also valid for the value L equal to L∗. In this case, the lot
sizes are the EOQ of the minimization problem with L variable given by (5.1).

The fact that the lot sizes remain proportional for different values of L
comes from the optimality conditions that requires that the gradient of the
cost functions at the optimal lot sizes Q∗c

−ΛcOc

(Q∗c)
2

= −ΛdOd

(Q∗d)
2
∀c, d ∈ C

are all equal. This is illustrated on Figure 5 for three different customer
cost functions.
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Figure 5: Transportation functions and derivatives.

The case of pooled containers with perfect coordination can be solved by the
same procedure. The optimality conditions

ΛcOc

(Qc)2

1

(1 + Λc/Γ)
=

ΛdOd

(Qd)2

1

(1 + Λd/Γ)
∀c, d ∈ C

lead to the following optimal lot sizes

Q∗c(ppc) =
2L∑

d∈C

√
OdΛd(1 + Λd/Γ)

√
OcΛc√

(1 + Λc/Γ)

The “1-factory C-customer” case thus leads to lot sizes that are easy to com-
pute. In the (np) case, with L fixed or variable, they are proportional to

Q∗c(np) ∝
√
OcΛc ∝

√
Oc

1/Λc + 1/Λc

while in the (ppc) case, they are proportional to

Q∗c(ppc) ∝

√
Oc

1/Λc + 1/Γ
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This clearly indicates that, in the (ppc) case, the factory consumes the con-
tainers at the speed Γ instead of Λc. In both cases, a large Λc still favors
a large lot size since this lot size rotates quickly. However the advantage is
reduced in the (np) case since the advantage of a high rotation takes place
at the customer site only.

In practice, since every unit of a lot size rotates almost twice as fast in
the (ppc) case than in the (np), the lot sizes will be larger in the (ppc) case.
If L is fixed, they will be almost doubled, leading to a reduction of 50% on
the transportation cost.

5.2.2 Capacitated transportation

Let us now complete the “1-factory C-customer” problem with the case of a
fixed L and with some capacity constraints on the lots sizes.

The solution of the problem with this additional constraint is more com-
plex analytically. Intuitively, the approach remains the same. The optimal
lot sizes are again determined so that their marginal contributions to the ob-
jective function are all equal, while satisfying the L constraint. If now, some
capacity constraints are exceeded, then these lot sizes are limited to CAP .
Since this gives an additional available inventory, the other lot sizes can all
be increased while keeping the same marginal contributions. The process is
reiterated as long as either L is reached or all the capacity limits have been
reached. Another simple method consists in considering the containers of the
logistic inventory one by one and in allocating them to the customer with the
steepest marginal contribution. If, in this process, a customer reaches the
transportation capacity limit, then he is not allowed to receive any additional
unit. Again, the process ends when the last container has been allocated or
when all the capacity limits have been reached.
Figure 6 represents the typical evolution of the total logistic cost for both

cases, pooled or non-pooled, with a small or a large capacity. For low levels
of logistic inventory, the situation typically remains unchanged since all op-
timal lot sizes are smaller than the capacity limit. When the logistic stock
becomes larger, the (ppc) curve with capacity constraints separates from the
(ppc) curve without capacity constraints as soon as some lot sizes reach the
capacity limit. Additional containers allocated to the system still bring a
profit but a lower one because those units are allocated to customers with
flatter slopes. As the logistic inventory further increases, we reach a point
where all lot sizes reach the capacity limit. The capacitated curve becomes
a straight line, indicating the linear increase of the holding cost linked with
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Figure 6: Impact of a small or a large capacity limit.

each additional unit. The same behavior is to be observed in the (np) case.
However, for any given level of the logistic inventory, the (ppc) optimal quan-
tities are larger than the (np) optimal quantities. Consequently, the level of
L for which the capacitated curve separates from the uncapacitated curve in
the (np) case is larger than in the (ppc) case.

6 F-Factory and 1-Customer

The case “F-factory 1-customer” with F factories being resupplied by a single
customer is completely symetric to the “1-factory C-customer” case discussed
in the previous section. We will quickly analyze this case since it constitutes
a kind of summary of the previous case.

Referring to our notation, we have here a single customer and therefore

λfc = λf1 = Γf∑
f

Γf = Λ

Of
c = Of

Qf
c = Qf

1 = Qf
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The optimal solution with L variable is as follows:

Qf∗(np) =

√
ΓfOf

H
;L∗(np) =

∑
f∈F

Qf∗(np)

and

Qf∗(ppc) =

√
2ΓfOf

(1 + Γf/Λ)H
;

L∗(ppc) =
∑
f∈F

Qf∗(ppc)

2
(1 + Γf/Λ)

If there are some capacity limits, we should just bound the lot sizes accord-
ingly, everything else being equal.

With a given fixed logistic inventory L, we compute a first set of lot sizes
Qf using the proportionality rules derived from the above equations. Then,
we can scale all these lot sizes in order to reach the target L. If some capac-
ity bounds are exceeded, we limit these lot sizes to the capacity CAP and
rescale the other Qf again. This process will be repeated until we reach the
target L or until all the capacity constraints are reached.

The managerial conclusions are the same as with the“1-factory C-customer”
case. Pooling with perfect coordination brings a potential benefit of 30% in
the L variable case. If L is given, the lot sizes can almost be doubled in the
(ppc) bringing a reduction of the transportation costs of almost 50%. Active
capacity contraints could limit this lot size increase, reducing the benefit of
the pooling.

7 F-factory C-customer case

In this section, we consider the general network composed of F factories and
C customers. If the logistic containers are specific to each factory, the prob-
lem degenerates into F 1-factory C-customer problems. Such problems were
studied in the section 5. Similarly, if the logistic containers are specific to
each customer, the problem degenerates into C F-factory 1-customer prob-
lems as analyzed in Section 6. So, we will assume here that all containers in
the network of F factories and C customers are identical and can be pooled.
We will also assume perfect coordination as in Sections 5 and 6.
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The problem has the general formulation discussed in Section 2. Com-
pared to the subproblems analyzed in Sections 4 to 6, the general problem
introduces the λfc variables, that is the flow each customer decides to send
back to a precise factory f . The determination of these variables is called the
customer allocation problem. Along with the customer allocation problem,
we must also determine the lot sizes Qf

c by which a given customer c will
send back its flow λfc to the factory f . Finally, the lot sizes will also provide
the total inventory of containers L.

The analysis will show that the general problem is rather easy since it can
be decomposed into 2 independent problems: a customer allocation problem
that determines which customer sends containers to which factory and a lot
size problem that defines how these flows are grouped. However, in some
cases, these two problems have to be solved jointly. As in the previous
sections, we will consider the cases of fixed and variable L. The impact of
capacity constraints will also be studied.

7.1 Uncapacitated problem

7.1.1 Decomposition of the problem

Let us first rewrite the general problem as below and solve it for the variables
Qf
c .

min
(Qf

c )

LH +
∑

c∈C,f∈F

λfcO
f
c

Qf
c

s.t.

∑
c∈C

λfc = Γf ∀f∑
f∈F

λfc = Λc ∀c

L =
∑

c∈C,f∈F

Qf
cλ

f
c

2
(

1

Λc

+
1

Γf
)
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Defining the Lagrangian function

L = LH +
∑

c∈C,f∈F

λfcO
f
c

Qf
c

+β

( ∑
c∈C,f∈F

Qf
cλ

f
c

2
(

1

Λc

+
1

Γf
)− L

)

leads to the following first order conditions:{
λf

cO
f
c

(Qf
c )2

= β λ
f
c

2
( 1

Λc
+ 1

Γf ) ∀c, f

L =
∑

c∈C,f∈F
Qf

cλ
f
c

2
( 1

Λc
+ 1

Γf )

from which we can deduce, ∀c, f , the optimal quantities

Qf∗
c (ppc) = k

√
Of
c

( 1
Λc

+ 1
Γf )

(7.1)

where k is a normalization constant

k =
2L∑

d∈C,g∈F λ
g
d

√
Og
d(

1
Λd

+ 1
Γg )

Reinserting those quantities in the objective function leads to the problem

min
L,λf

c

LH +

[∑
c∈C,f∈F λ

f
c

√
Of
c ( 1

Λc
+ 1

Γf )
]2

2L

s.t.

∑
c∈C

λfc = Γf ∀f (1)∑
f∈F

λfc = Λc ∀c (2)

Now, this problem can be solved in two steps. First, we solve the customer
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allocation problem

min
∑

c∈C,f∈F

λfc

√
Of
c (

1

Λc

+
1

Γf
)

st
∑
c∈C

λfc = Γf ∀f∑
f∈F

λfc = Λc ∀c

in order to determine the optimal customer allocation λf∗c values. Secondly,
on the basis of these λf∗c values, the optimal lot sizes Qf∗

c (ppc) can be deter-
mined.

7.1.2 Customer allocation problem

The customer allocation problem is a simple linear program. It is an instance
of the transportation problem with a cost function that exhibits some speci-
ficities.

First, the model is not based on the direct transportation cost Of
c but on

its square root. This comes from the EOQ-like general model. If a customer
is more distant than another, than its lot size Qf

c will be made larger in order
to smooth its impact on the transportation costs. This results in the square
root function. Secondly, the transportation cost Of

c under the square root is
corrected by a term ( 1

Λc
+ 1

Γf ). Indeed, the faster the inventory along a c− f
relationship rotates, the less costly this inventory is and the larger the lot
size can be. This comes from the contribution of Qf

c to L

L =
∑

c∈C,f∈F

Qf
cλ

f
c

2
(

1

Λc

+
1

Γf
)

that decreases as Λc and Γf increase.

A quick analysis of the linear customer allocation program allows us to iden-
tify C + F − 1 linearly independent constraints. It follows that, among the
CF variables, C + F − 1 are basic. Since, each customer must have a least
one allocation, we can conclude that there will be, at most, F − 1 customers
who are allocated to more than 1 factory.

22



7.1.3 Lot Size calculation

Now, on the basis of these λf∗c values, the optimal lot sizes Qf∗
c (ppc) can be

computed assuming that there is some flow from c to f . If L is fixed, then we
simply use the Equation (7.1). If L is variable, we solve the following EOQ
problem

min
L

LH +

[∑
c∈C,f∈F λ

f∗
c

√
Of
c ( 1

Λc
+ 1

Γf )
]2

2L

We obtain

L∗ =
∑

c∈C,f∈F

λf∗c

√
Of
c ( 1

Λc
+ 1

Γf )

2H

which leads to the optimal lot sizes

Qf∗
c (ppc) =

√
2Of

c

H( 1
Λc

+ 1
Γf )

(7.2)

It is worth noting here that these lot sizes are independent of the flows
λf∗c (ppc), as long as they are not equal to zero. Without loss of generality,
we will assume here below that for the c− f relationships with λf∗c (ppc) = 0,
the lot sizes are also set to zero.

7.2 Capacitated problem with L variable

The problem becomes a bit more complex when some transportation capac-
ity constraints limit the lot sizes. We will consider successively the variable
L and the fixed L cases.

For the variable L case, let us first determine the lot sizes Qf∗
c (ppc). They

are defined by Equation (7.2). If some of these lot sizes exceed the capacity
threshold, we then limit them as follows

Qf∗
c (ppc) = Min

{
CAP,

√
2Of

c

H( 1
Λc

+ 1
Γf )

}
(7.3)

In practice, we can compute which lot size will be limited by the capacity
CAP and which ones will not. And this calculation is independent of the
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flow λf∗c from c to f . We can then re-introduce these optimal values in the
objective function. The cost generated by each lot size Qf∗

c (ppc) is

λfcO
f
c

Qf∗
c (ppc)

+
HQf∗

c (ppc)λfc
2

(
1

Λc

+
1

Γf
)

which becomes, if Qf∗
c (ppc) is smaller than CAP ,

λfc
√

2H

√
Of
c (

1

Λc

+
1

Γf
)

and, if it equals CAP

λfc

(
Of
c

CAP
+
CAP H

2
(

1

Λc

+
1

Γf
)

)

We can now formulate the allocation problem for the capacitated variable L
problem as follows

minimize
λf

c∑
c,f :Qf∗

c ≤CAP

λfc

√
Of
cH(

1

Λc

+
1

Γf
) +

∑
c,f :Qf∗

c >CAP

λfc (
Of
c

CAP
+
CAP H

2

(Λc + Γf )

ΛcΓf
)

such that∑
c∈C

λfc = Γf ∀f∑
f∈F

λfc = Λc ∀c

which is an LP problem that can be easily solved.

7.3 Capacitated problem with L fixed

When L is fixed and some lot sizes are constrained, we have the toughest
version of our problem. Indeed, the capacity constraints prevent us from de-
riving analytical expressions for Qf∗

c (ppc) such as in Equation (7.1). Also, the
variable L approach that allowed us to derived the flow independent expres-
sions (7.3) cannot be used. Indeed, each lot size is now dependent, through
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the total logistic inventory L on the other lot sizes. In other words, in this
problem Qf

c (ppc) depends on λfc (ppc) and vice versa. Breaking this depen-
dence is the key point. In order to illustrate the complexity of the problem,
let us consider different ranges of L.

If we consider extremely small values for L, the capacity constrains do
not play any role. In this case, our problem is identical to the uncapacitated
problem. And the λfc (ppc) could be determined by minimizing

min
∑

c∈C,f∈F

λfc

√
Of
c (

1

Λc

+
1

Γf
)

In this setting, a more distant customer will receive of larger share of the in-
ventory, reducing the impact of their distance in comparison with the other
relations. But, in the capacitated case, this is true only up to a certain lot
size equals to CAP . A distant customer having reached this maximal lot size
will see the impact of its distance becoming more important.

Indeed, if we consider very large values for L, then the capacity limits
will be reached and all the lot sizes will be equal to CAP . In this case, we
just aim at minimizing the transportation costs

min
∑

c∈C,f∈F

λfcO
f
c

CAP

In which the transportation costs
√
Of
c ( 1

Λc
+ 1

Γf ) have been replaced by Of
c .

The problem is thus more difficult because we cannot easily opt for a
specific cost function. Indeed, this cost will differ if the lot size reaches the
capacity limit or not and this depends on the L value.

The solution we suggest consists in finding first, on the basis of a given
L which lot sizes will remain below the threshold capacity CAP and which
ones will not. This solution procedure relies on the following very intuitive
property.

Property. The optimal solution of a variable L capacitated problem for
which the holding cost is replaced by a fictitious unit value W of the inven-
tory and that implies a logistic stock L∗(W ), is the optimal solution of the
problem with L fixed to L∗(W ) for any value of H.
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Since the problem with variable L is easy, we can develop a solution pro-
cedure for the fixed L problem. We start with any value W for the fictitious
holding cost and solve the variable L capacitated problem. This leads to
some optimal logistic cost L∗(W ), most likely different than the given L. We
then increase or decrease W until we reach our target L.

The technical proof of this property can be sketched as follows. With L
fixed, we aim at minimizing the transportation cost with a constraint on the
total logistic inventory L. We can introduce this constraint into the objective
function by means of a Lagrangian multiplier W . The objective function is
now the sum of a transportation cost and a fictitious holding cost like in the
variable L case. The optimal solution is found by tuning the Lagrangian
multiplier until the target L value is reached.

Different approaches can be used to find the exact value of W . One could
browse systematically all possible values or use an approach based on itera-
tively adapted intervals.

Next, we describe a very simple alternative to the computation of the
solution:

1. Set WLOW = 0 and WHIGH = very large value

2. Choose an adequate value for the fictitious holding cost W comprised
between WLOW and WHIGH

3. Solve the corresponding variable L capacitated problem

• Compute the lot sizes Qf∗
c (ppc)[W ] using (7.2)

• Limit those that exceed the capacity limit using (7.3)

• Solve the capacitated variable L customer allocation problem.
This gives the optimal λf∗c

4. Knowing the non-zero λf∗c , derive the corresponding total logistic in-
ventory L∗(W )

5. If L∗(W ) = L or if L∗(W ) < L and all lot sizes are equal to CAP, then
STOP

6. Otherwise, update the interval, that is

• if L∗(W ) > L, Set WLOW = W
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• if L∗(W ) < L, Set WHIGH = W

• go back to step 2.

7.4 Managerial implications for the multi-factory case

Let us consider on a small example the allocation of two customers to two
factories. If we allow the accumulation of the empty containers by means of
a global logistic inventory, we showed that we obtain the following objective
to minimize

min
∑

c∈C,f∈F

λfc

√
Of
c (

1

Λc

+
1

Γf
)

Figure 7: A small allocation example based on logistic costs.

The solution is illustrated on Figure 7. Customer 1 is allocated to factory
1 as well as 4 units of customer 2. This solution is explained by the fact
that, for customer 2, reallocating 1 unit from factory 2 to factory 1 brings
an increase of the total cost which is√

15(
1

16
+

1

8
)−

√
17(

1

16
+

1

12
) = 0.10

while for customer 1, the corresponding cost increase is only√
10(

1

4
+

1

8
)−

√
11(

1

4
+

1

12
) = 0.02
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The underlying reasons for the use of this objective function are (i) the ex-
istence of an inventory which allows larger lot sizes for distant factories and
(ii) the rotation of that inventory.

These reasons explain the difference of our objective function with the
classical objective function of the transportaion problem based on the trans-
portation costs

min
∑

c∈C,f∈F

λfcO
f
c

The solution provided by this more classical objective function is depicted
on Figure 8. Customer 1 is allocated to factory 2. Allocating customer 1
to factory 1 would bring a profit of 1e per unit but would also result in a
loss of 2e per unit for transferring some flow of customer 2 from factory 1 to
factory 2.

Figure 8: A small allocation example based on transportation costs.

We showed, however, that the effects allowing us to use the first ob-
jective function in the uncapacitated case may be tempered by a capacity
limit. In the capacitated case, we have seen that, if the logistic inventory
is small, no lot size would reach the capacity limit and the solution found
for the uncapacitated case, represented on Figure 7, remains valid. However,
when the logistic inventory progressively increases, some capacity limits will
be reached, and the proportion between the quantities will begin to change.
Eventually, if the logistic inventory is very large, all quantities are limited by
the capacity, and we retrieve the classical objective based on transportation
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costs. In our example, with a transport capacity limit of 20, if the logis-
tic inventory exceeds 36 units, the solution depicted on Figure 8, based on a
classical allocation on the transportation costs, becomes the optimal solution.

In the multi-factory multi-customer case, the gain of pooling appears
at two levels. First, resource pooling allows the customers to send their
contaienrs back to any factory. This reallocation provides a benefit in terms
of total travelled distance. This benefit cannot be measured analytically. It
depends on the actual data and can only be computed numerically. Secondly,
inside each factory cluster, the pooling provides an additional benefit. This
benefit can amount up to 1/

√
2. When capacity constraints are active, they

can limit this benefit. In the worst case, capacity constraints are all binding
and the pooling provides no benefits on the transportation costs. However,
a reduction of the logistic stock due to an increase rotation rate of the units
at the factories and at the clients remains.

8 Conclusion and future work

The objective of the paper was to answer 3 strategic questions for the man-
agement of the return flows of empty reusable logistic containers

Q1: to which factory should each customer return the containers?
Q2: at which frequency should they be returned ?
Q3: how many containers are needed in the network?

and to get some insight on the benefit of pooling such containers among
the players. To tackle all these questions, we considered cases of increas-
ing complexity from the “1-factory 1-customer” case, to the “F-factory C-
customer” case. We also considered the impact of capacity constraints and
of a fixed/variable logistic cost. Solutions were provided in all cases.

At first, we showed that the single-factory single-customer case with vari-
able L was easily solved by an EOQ-like formula. The optimal quantity,
however, was smaller than a classical EOQ by a factor

√
2 since we consider

the inventory both at the customer and at the factory sites.

The case with a single-factory and several customers reduces to c inde-
pendent single-factory single-customer problems if the logistic units are not
pooled. Each customer will select its own optimal lot size. Dependence be-
tween the customers appears if we suppose that the logistic units can be
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pooled at the factory. However, the benefit of the pooling depends on the
coordination of the return flows. If they all occur at the same moment then
we have no coordination and no benefit. In the other extreme, namely perfect
coordination, each return arrives at the factory when the inventory had just
fallen to zero. This allows the quickest rotation of the inventory at the fac-
tory and thus the best use of the inventory of containers. The pooled perfect
coordination case leads to lot sizes that are

√
2 larger and a total benefit of

up to 1/
√

2, that is, about 30 percent. A set of experiments developed by
the same authors in a forthcoming paper shows that the perfect coordination
assumption is very realistic.

The multi-factory multi-customer case introduces the problem of allocat-
ing the customers to the factories. The first important result is that the
allocation problem, in the uncapacitated case, is independent from the ac-
tual level of the logistic stock. It defines an allocation of the customers and
relative frequencies for all customer-factory pairs. As before, the logistic
stock will be used to scale those relative frequencies such as to meet the
constraint implied by the number of units in the network. The allocation
problem appears as a transportation problem with costs including features
of the EOQ-like model. It was shown that the cost comparison between
the customer-factory relationships is based on a square root of the distances
weighted by a factor depending on the consumption rates at the customer
and at the factory.

If a transport capacity limit is added to the model, then the allocation prob-
lem is not independent of L any more. For a low level of logistic inventory,
when the capacity has no impact, the EOQ-like costs remain valid, as well
as the uncapacitated allocation. However, for large values of L, the holding
cost effect tends to disappear and a classical allocation based on the dis-
tances becomes optimal. We have suggested an iterative procedure in order
to determine, for the given value of the logistic stock, which lot size will be
limited by the capacity and which ones will not. On the basis of this result,
the optimal customer allocation can be found.

Our analysis allowed to identify the economic logic which is relevant for
the model, the trade-offs that appear in the management of the return flows
of empty logistic units and how the costs would react to variations of the
parameters. It also allows us to identify the different problems and the logic
for solving them. This analysis provides a good basis for tackling strategic
comparisons when deciding for some network structures. The analysis re-
lies on the perfect coordination assumption. But our preliminary results, to
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be presented in a forthcoming paper, are already quite reassuring in that
respect. One of our current research directions is thus the development of
robust heuristics which guarantee almost perfect coordination in the daily
management of these return flows.

Besides, other extensions are also under study. In the model we presented,
the transportation cost is assumed to be fixed from a customer to a factory.
Milkruns or consolidation strategies are being studied. Finally, networks with
different types of containers that can share the same transportation means
are also possible extensions.
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[2] Axsäter S. Economic lot sizes and vehicle scheduling. European Journal
of Operational Research 1980; 4; 395-398.

[3] Churchman C W, Ackoff R L, Arnoff E L. Introduction to Operations
Research. John Wiley and Sons, New York; 1957.

[4] Dixon P S, Poh C L. Heuristic procedures for multiitem inventory plan-
ning with limited storage. IIE Transactions 1990;6; 112-123.

[5] Gallego G, Shaw D,Simchi-Levi D. The Complexity of the Staggering
Problem and Other Classical Inventory Problems. Operation Research
Letters 1992; 12; 47-52.

[6] Gallego G, Queranne M, Simchi-Levi D. Single resource multi-item in-
ventory systems. Operations Research 1996; 44; 580-595.

[7] Goyal S K.() Optimum ordering policy for a multi-item single supplier
system. Operations Research Quaterly 1974; 25; 293.

[8] Günther H-O. Ein Verfahren zur Bestellmengenplanung bei beschränker
Lagerkapazität. In Bühler W, Feichtinger G, Hartl R F, Rademacher

31



F J, Stähly P. Operations Research Proceedings. Springer, Berlin
Heidelberg;491-498; 1990.

[9] Hadley G, Whitin T M. Analysis of Inventory Systems. Prentice Hall,
Englewood Cliffs, New Jersey; 1963.

[10] Haksever C, Moussourakis J. A model for optimizing multi-product in-
ventory systems with multiple constraints. International Journal of Pro-
duction Economics 2005; 97; 18-30.

[11] Hall N G. A Multi-Item EOQ Model with Inventory Cycle Balancing.
Naval Research Logistics 1988; 35; 319-325.

[12] Hariga M, Jackson P L. The warehouse scheduling problem: Formula-
tions and algorithms. IIE Transactions 1996; 28; 115-127.

[13] Harris F W. What quantity to make at once. The library of factory
management 1915; 5; 47-52.

[14] Holt C C. Decision Rules for Allocating Inventory to Lots and Cost Foun-
dations for Making Aggregate Inventory Decisions. Journal of Industrial
Engineering 1958; 9; 14-22.

[15] Hommer E D. Space-limited aggregate inventories with phased deliver-
ies. Journal of Industrial Engineering 1966; 17; 327.

[16] Huang W, Romeijn H E, Geunes J. The Continuous-Time Single-
Sourcing Problem with Capacity Expansion Opportunities. Naval Re-
search Logistics 2005; 52; 193-211.

[17] Krone L H. A note on economic lot sizes for multi-purpose equipment.
Management Science 1964; 10; 461-464.

[18] Maxwell W L. The scheduling of economic lot sizes. Naval Research
Logistics Quaterly 1964; 11; 89-124.

[19] Page E, Paul R J. Multi-product Inventory Situation with one Restric-
tion. Journal of the Operational Research Society 1976; 27; 815-834.

[20] Parsons J A. A note on Krone’s economic lot-size formulas. Management
Science 1965; 12; 314-315.

[21] Parsons J A. Multiproduct lot size determination when certain restric-
tions are active. Journal of Industrial Engineering 1966; 17; 360-365.

32



[22] Rosenblatt M J. Multi-item inventory system with budgetary constraint:
A comparison between the Lagrangian and the fixed cycle approach. In-
ternational Journal of Production Research 1981; 19; 331-339.

[23] Silver E A. A simple method of determining order quantities in joint
replenishments under deterministic demand. Management Science 1976;
22; 1351-1361.

[24] Zoller K. Deterministic multi-item inventory system with limited capac-
ity. Management Science 1977; 24; 451-455.

33



Recent titles 
CORE Discussion Papers 

 
2009/57. Marie-Louise LEROUX, Pierre PESTIEAU and Maria RACIONERO. Voting on pensions: sex 

and marriage. 
2009/58. Jean J. GABSZEWICZ. A note on price competition in product differentiation models. 
2009/59. Olivier BOS and Martin RANGER. All-pay auctions with endogenous rewards. 
2009/60. Julio DAVILA and Marie-Louise LEROUX. On the fiscal treatment of life expectancy related 

choices.  
2009/61. Luc BAUWENS and Jeroen V.K. ROMBOUTS. On marginal likelihood computation in 

change-point models. 
2009/62. Jorge ALCALDE-UNZU and Elena MOLIS. Exchange of indivisible goods and indifferences: 

the Top Trading Absorbing Sets mechanisms. 
2009/63. Pascal MOSSAY and Pierre M. PICARD. On spatial equilibria in a social interaction model. 
2009/64. Laurence JACQUET and Dirk VAN DE GAER. A comparison of optimal tax policies when 

compensation or responsibility matter. 
2009/65. David DE LA CROIX and Clara DELAVALLADE. Why corrupt governments may receive 

more foreign aid. 
2009/66. Gilles GRANDJEAN, Ana MAULEON and Vincent VANNETELBOSCH. Strongly rational 

sets for normal-form games. 
2009/67. Kristian BEHRENS, Susana PERALTA and Pierre M. PICARD. Transfer pricing rules, OECD 

guidelines, and market distortions. 
2009/68. Marco MARINUCCI and Wouter VERGOTE. Endogenous network formation in patent 

contests and its role as a barrier to entry. 
2009/69. Andréas HEINEN and Alfonso VALDESOGO. Asymmetric CAPM dependence for large 

dimensions: the Canonical Vine Autoregressive Model. 
2009/70. Skerdilajda ZANAJ. Product differentiation and vertical integration in presence of double 

marginalization. 
2009/71. Marie-Louise LEROUX and Grégory PONTHIERE. Wives, husbands and wheelchairs: 

Optimal tax policy under gender-specific health. 
2009/72. Yu. NESTEROV and Levent TUNCEL. Local quadratic convergence of polynomial-time 

interior-point methods for conic optimization problems. 
2009/73. Grégory VANDENBULCKE, Claire DUJARDIN, Isabelle THOMAS, Bas DE GEUS, Bart 

DEGRAEUWE, Romain MEEUSEN and Luc INT PANIS. Cycle commuting in Belgium: 
Spatial determinants and 're-cycling' strategies. 

2009/74. Noël BONNEUIL and Raouf BOUCEKKINE. Sustainability, optimality, and viability in the 
Ramsey model. 

2009/75. Eric TOULEMONDE. The principle of mutual recognition – A source of divergence? 
2009/76. David DE LA CROIX, Pierre PESTIEAU and Grégory PONTHIÈRE. How powerful is 

demography? The Serendipity Theorem revisited. 
2009/77. Nicola ACOCELLA, Giovanni DI BARTOLOMEO, Andrew HUGUES HALLETT and Paolo 

G. PIACQUADIO. Announcement wars as an equilibrium selection device. 
2009/78. Julio DÁVILA. The taxation of savings in overlapping generations economies with unbacked 

risky assets. 
2009/79. Elena DEL REY and Miguel Angel LOPEZ-GARCIA. Optimal education and pensions in an 

endogenous growth model. 
2009/80. Hiroshi UNO. Strategic complementarities and nested potential games. 
2009/81. Xavier WAUTHY. Market coverage and the nature of product differentiation: a note. 
2009/82. Filippo L.  CALCIANO. Nash equilibria of games with increasing best replies. 
2009/83. Jacques H. DRÈZE, Oussama LACHIRI and Enrico MINELLI. Stock prices, anticipations and 

investment in general equilibrium. 
2009/84. Claire DUJARDIN and Florence GOFFETTE-NAGOT. Neighborhood effect on 

unemployment? A test à la Altonji. 
 



Recent titles 
CORE Discussion Papers - continued 

 
2009/85. Erwin OOGHE and Erik SCHOKKAERT. School accountability: (how) can we reward schools 

and avoid cream-skimming. 
2009/86. Ilke VAN BEVEREN and Hylke VANDENBUSSCHE. Product and process innovation and the 

decision to export: firm-level evidence for Belgium. 
2010/1. Giorgia OGGIONI and Yves SMEERS. Degree of coordination in market-coupling and 

counter-trading. 
2010/2. Yu. NESTEROV. Efficiency of coordinate descent methods on huge-scale optimization 

problems. 
2010/3. Geert DHAENE an Koen JOCHMANS. Split-panel jackknife estimation of fixed-effect models. 
2010/4. Parkash CHANDER. Cores of games with positive externalities. 
2010/5. Gauthier DE MAERE D'AERTRYCKE and Yves SMEERS. Liquidity risks on power 

exchanges. 
2010/6. Marc FLEURBAEY, Stéphane LUCHINI, Christophe MULLER and Erik SCHOKKAERT. 

Equivalent income and the economic evaluation of health care. 
2010/7. Elena IÑARRA, Conchi LARREA and Elena MOLIS. The stability of the roommate problem 

revisited. 
2010/8. Philippe CHEVALIER, Isabelle THOMAS and David GERAETS, Els GOETGHEBEUR, 

Olivier JANSSENS, Dominique PEETERS and Frank PLASTRIA. Locating fire-stations: an 
integrated approach for Belgium. 

2010/9. Jean-Charles LANGE and Pierre SEMAL. Design of a network of reusable logistic containers. 
 

Books 
 
Public goods, environmental externalities and fiscal competition: 22 selected papers in public economics by 

Henry Tulkens, edited and introduced by Parkash Chander, Jacques Drèze, C. Knox Lovell and 
Jack Mintz, Springer, Boston 2006 (588 pp.). 

V. GINSBURGH and D. THROSBY (eds.) (2006), Handbook of the economics of art and culture. 
Amsterdam, Elsevier. 

J. GABSZEWICZ (ed.) (2006), La différenciation des produits. Paris, La découverte. 
L. BAUWENS, W. POHLMEIER and D. VEREDAS (eds.) (2008), High frequency financial econometrics: 

recent developments. Heidelberg, Physica-Verlag. 
P. VAN HENTENRYCKE and L. WOLSEY (eds.) (2007), Integration of AI and OR techniques in constraint 

programming for combinatorial optimization problems. Berlin, Springer. 
P-P. COMBES, Th. MAYER and J-F. THISSE (eds.) (2008), Economic geography: the integration of 

regions and nations. Princeton, Princeton University Press. 
J. HINDRIKS (ed.) (2008), Au-delà de Copernic: de la confusion au consensus ? Brussels, Academic and 

Scientific Publishers. 
J-M. HURIOT and J-F. THISSE (eds) (2009), Economics of cities. Cambridge, Cambridge University Press. 
 

CORE Lecture Series 
 
C. GOURIÉROUX and A. MONFORT (1995), Simulation Based Econometric Methods. 
A. RUBINSTEIN (1996), Lectures on Modeling Bounded Rationality. 
J. RENEGAR (1999), A Mathematical View of Interior-Point Methods in Convex Optimization. 
B.D. BERNHEIM and M.D. WHINSTON (1999), Anticompetitive Exclusion and Foreclosure Through 

Vertical Agreements. 
D. BIENSTOCK (2001), Potential function methods for approximately solving linear programming 

problems: theory and practice. 
R. AMIR (2002), Supermodularity and complementarity in economics. 
R. WEISMANTEL (2006), Lectures on mixed nonlinear programming. 




