
 
2012/27 

 
 
■ 

 
 

Arrow's theorem of the deductible: moral hazard 
and stop-loss in health insurance 

 
 
 

Jacques H. Drèze and Erik Schokkaert 
 
 
 
 

 
 
 

 
 
 

 
 

 

Center for Operations Research 
and Econometrics 

 
Voie du Roman Pays, 34 

B-1348 Louvain-la-Neuve 
Belgium 

http://www.uclouvain.be/core 

D I S C U S S I O N  P A P E R  
 



CORE DISCUSSION PAPER   
2012/27 

 
Arrow's theorem of the deductible: moral hazard 

and stop-loss in health insurance 
 

Jacques H. DRÈZE 1 and Erik SCHOKKAERT2  
 

June 2012 
 

Abstract 
 

We show that the logic of Arrow's theorem of the deductible, i.e. that it is optimal to focus 
insurance coverage on the states with largest expenditures, remains at work in a model with ex 
post moral hazard. The optimal insurance contract takes the form of a system of "implicit 
deductibles", i.e. it results in the same indemnities as a contract with full insurance above a 
variable deductible positively related to the elasticity of medical expenditures with respect to the 
insurance rate. In a model with an explicit stop-loss arrangement, i.e. with a predefined ceiling on 
the annual expenses of the insured, this stop-loss takes the form of a deductible, i.e. there is no 
reimbursement for expenses below the stop-loss amount. One motivation to have some insurance 
below the deductible arises if regular health care expenditures in a situation of standard health 
have a negative effect on the probability of getting into a state with large medical expenses. 
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1 Introduction

One of the most elegant results in the theory of optimal insurance is Arrow�s

so-called �theorem of the deductible�: �If an insurance company is willing

to o¤er any insurance policy against loss desired by the buyer at a premium

which depends only on the policy�s actuarial value, then the policy chosen by

a risk-averting buyer will take the form of 100% coverage above a deductible

minimum� (Arrow, 1963). In his seminal article, Arrow assumed that the

loading factor is proportional to total (expected) reimbursements and that

the buyer maximizes expected utility. However, these assumptions are not

essential for the basic result. The optimal insurance policy features a pos-

itive deductible as soon as the loading increases with total reimbursements

(see, e.g., Zweifel et al., 2009). Moreover, Gollier and Schlesinger (1996)

have shown that a deductible insurance policy second-degree stochastically

dominates any other feasible insurance policy, and that deductibles should

therefore be preferred by all risk-averse agents even if they are not expected

utility-maximizers. The robustness of Arrow�s result re�ects its simple logic:

since it is better for the consumer to insure expenditures when disposable

income is low rather than high, insurance funds should always be spent on

the highest expenditures.

In its original form, Arrow�s theorem does not apply under moral haz-

ard. This explains why, despite its strong intuitive appeal, it did not play

an important role in later developments of the theory of optimal health in-

surance. With full insurance above a deductible, the ex post marginal cost

to the insured of additional expenses beyond the deductible is zero, leading

to ex post over-consumption. Following another lead in Arrow (1963), the

literature has focused on this moral hazard problem and has analysed how

introducing coinsurance, i.e. partial reimbursement of expenses, may lower

the incentives for overconsumption. The optimal level of coinsurance should

then strike a balance between the welfare loss of moral hazard, calling for a

larger out-of-pocket share for the insured, and the welfare gain of risk shar-

ing, calling for a more generous reimbursement (Pauly, 1968; Zeckhauser,

1970).1

Most models in the literature have assumed a linear insurance scheme
1An extensive survey of the literature on optimal health insurance, including more

references, can be found in Cutler and Zeckhauser (2000) and McGuire (2012). Both

chapters also comment on the variety of medical insurance policies in the real world.
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with a �xed coinsurance rate. Note that this linear structure is an assump-

tion, not a result of the theory. The simple logic of Arrow�s theorem cannot

be recovered in this approach. Moreover, the assumption of a �xed coin-

surance rate does not �t insurance policies in the real world which often

have nonlinear features, such as explicit deductibles or a (possibly income-

dependent) stop-loss, i.e. a maximum imposed on total out-of-pocket pay-

ments of the consumer. The authoritative RAND-experiment (Manning et

al., 1987) introduced in its experimental policies partial �rst-dollar insurance

and a stop-loss, although the researchers were well aware that this would

make it more di¢ cult to compare their results to the existing literature.2

As another example, our home country, Belgium, has a social insurance

system with a highly di¤erentiated structure of co-payments and with an

income-dependent stop loss, the so-called maximum billing system.3 The

theoretical results derived from a model with a constant coinsurance rate

may be misleading when one wants to analyse these more complex real-world

systems. However, formulating a more general theoretical model has been

considered di¢ cult and non-rewarding. Commenting on Blomqvist (1997),

who solves through optimal control theory a model of non-linear health in-

surance, Cutler and Zeckhauser (2000, pp. 586-587) conclude: �Alas, this is

a complicated problem, whose algebra is not particularly revealing�.

In this paper, which builds upon the analysis in Drèze (2002), we derive

the optimal insurance policy in a general model with a discrete number of

states of health and we show that Arrow�s theorem of the deductible remains

relevant in a setting with moral hazard. In section 2 we introduce our model

and we derive the original Arrow-result in a simple �rst-best setting. In

section 3 we introduce ex post moral hazard. We �nd the usual trade-o¤

between moral hazard and risk sharing, but we also show how the logic of

Arrow�s theorem of the deductible is still at work in this more general model.

The optimality results can be interpreted in terms of an implicit deductible

property, namely: Arrow�s theorem holds over subsets of cases characterised

2The authors are crystal-clear about their position: �We make no apologies for this

intentional noncomparability; a constant coinsurance rate, while convenient for obtaining

comparative statics results, is not an insurance policy that theory suggests would be

optimal, assuming risk aversion. Indeed, an optimal policy would almost certainly contain

a stop-loss feature, exactly as the experimental plans did�(Manning et al., 1987, referring

to Arrow).
3These features are partly motivated by redistributive considerations �altogether ab-

sent from the present paper.
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by similar elasticities of medical expenses with respect to insurance rates,

with elasticity-related deductibles; under a single common elasticity, Arrow�s

theorem holds, but the deductible increases with that elasticity (which plays

the same role as the loading factor). Linear coinsurance schemes are sub-

optimal, as � conditional on the demand elasticity � insurance has to be

more generous for larger expenditures. We compare our approach to the

one of Blomqvist (1987). In section 4 we analyse a system (not considered

in Drèze (2002)) with an explicit stop-loss, i.e. with a prede�ned ceiling on

the annual expenses of the insured, and we show how Arrow�s result survives

the introduction of ex post moral hazard, i.e. ex post moral hazard does

not o¤er an argument to introduce partial �rst-dollar insurance (as in the

RAND experiment and in Belgium) and demand elasticities become irrel-

evant. However, Section 5 suggests that some �rst-dollar insurance can be

rationalized in a setting with ex ante moral hazard. We relate our �ndings

to the literature on �willingness to pay for safety" (Dehez and Drèze, 1982),

to existing models on optimal insurance for prevention (Ellis and Manning,

2007) and to the recent literature stressing the importance of taking into

account cross-price e¤ects in a setting with more health care commodities

(Goldman and Philipson, 2007). Section 6 concludes.

2 First best: Arrow�s theorem in a simple model

In its simplest form, a medical insurance problem concerns an individual

facing uncertainty about her future health condition. There are S states

of health indexed s = 1; :::; S with probabilities ps. Individuals have condi-

tional preferences between vectors (Ms; Cs) 2 <2+, whereMs > 0 and Cs > 0
stand respectively for medical expenditures and for disposable wealth (or ex-

penditures on consumption exclusive of medical expenditures) in state s: In

general these preferences could be represented by state-dependent utility

functions Us(Ms; Cs). To simplify the analysis we assume, in line with much

of the related literature, that preferences are separable between medical ex-

penditure and consumption and that preferences over disposable wealth are

state-independent, i.e. Us(Ms; Cs) = fs(Ms) + g(Cs):
4 The function fs(Ms)

captures both the e¤ect of medical expenditures on health and the e¤ect of

4The general model is analysed in Drèze (2002).
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health on utility.5 We assume fs and g to be continuously di¤erentiable and

strictly concave, i.e. f 0s > 0; f
00
s < 0; g

0 > 0; g00 < 0: We also assume that

resources are state-independent, i.e. Ws = Wt = W for all s; t = 1; :::; S.

Under these assumptions, preferences over S-vectors of medical expenditures

and disposable wealth are represented by the expected utility

V (M;C) =
X
s

ps [fs(Ms) + g(Cs)] : (1)

The individual may buy medical insurance �sMs; 0 6 �s 6 1 at a

premium

� = (1 + �)
X
s

ps�sMs; (2)

where � is a state-independent loading factor and �s is a state-speci�c in-

surance rate (with 1��s as the coinsurance rate). The assumption that the
insurance rate �s can be state-speci�c seems to suggest that the state s is

observable. This is in general not a realistic assumption. We will return to

this issue later on.

Let us now consider optimal health insurance in a �rst-best setting with-

out moral hazard. This means that the individual decisions about medical

expenditures in state s take into account their impact on the premium �.

The optimal policy is then found by solving the problem

max
�1;:::;�S ;M1;:::;MS

V (M;C) =
X
s

ps [fs(Ms) + g(W � � � (1� �s)Ms)] (3)

subject to eq. (2). The �rst-order conditions are

dV

dMs
= ps

�
f 0s � (1� �s)g0s

�
� (1 + �)ps�s

X
t

ptg
0
t = 0; (4)

dV

d�s
= psMs

"
g0s � (1 + �)

X
t

ptg
0
t

#
6 0; �s

dV

d�s
= 0: (5)

5Our model can be interpreted as a shortcut for Us(Ms; Cs) = v(Hs)+ g(Cs), with Hs

indicating health in state s, in�uenced by health care expenditures, i.e. Hs = hs(Ms).

Our assumptions of separability of preferences and state-independence of g(:) remove the

potential e¤ect of health on the marginal utility of income. It is well known that a non-zero

cross-e¤ect complicates all the results on optimal insurance and that the empirical infor-

mation at this moment does not allow us to make strong statements about the (variable)

signs of cross-e¤ects.
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Simplifying these �rst-order conditions immediately yields

for all s = 1; :::; S, f 0s = g
0
s (6)

and

either �s = 0 or g0s = (1 + �)
X
t

ptg
0
t := (1 + �)g

0: (7)

Eq. (6) shows that medical expenditures are set optimally, with marginal

bene�ts equal to marginal costs in each state s.

Eq. (7) is more interesting. Since (1 + �)g0 is independent of s, g0s (and

therefore (1 � �s)Ms) will be the same for all states s with �s > 0. De�ne

the deductible D := (1 � �s)Ms and write g0D for the marginal utility of

wealth at C =W � � �D. We can then rewrite eq. (7) as

�s = max(0;
Ms �D
Ms

); g0D = (1 + �)g
0: (8)

This is precisely Arrow�s theorem of the deductible. The marginal utility of

wealth must be the same in all states for which �s > 0; if medical expen-

ditures are smaller than D, expenses are fully borne by the insured. Note

that, if the loading factor � = 0, we get full insurance (g0s = g0 for all s).

Note also that this deductible policy can easily be implemented, even if the

state s is not observable.

It is readily veri�ed that, under DARA preferences,6 in the optimum D

is increasing in W and � but decreasing in risk aversion, as measured for

instance by the Arrow-Pratt coe¢ cient of relative risk aversion.7

3 Second best: Ex post moral hazard and implicit
deductibles

While the logic of Arrow�s theorem of the deductible in the case of �rst-best

is well known, we will now show that this logic remains at work in a second-

best context with ex post moral hazard. In this setting it takes the form of

an �implicit deductible�property.

6DARA: decreasing absolute risk aversion.
7The impact of an increase in risk on the optimal level of the deductible is analysed in

Eeckhoudt et al. (1991).
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We speak of �ex post-moral hazard�when the treatment is chosen by

the insured after observing the state, thus without regard for the impact of

Ms on the premium �: In state s, (s)he therefore solves the problem

max
Ms

fs(Ms) + g(W � � � (1� �s)Ms)

yielding the �rst-order condition

f 0s = g
0
s(1� �s): (9)

Condition (9) immediately reveals the �overconsumption� feature induced

by the insurance policy: instead of obtaining a marginal rate of substitution

between medical expenditures Ms and consumption expenditures Cs equal

to unity (as in eq. (6)), we now obtain a marginal rate of substitution

equal to 1 � �s, which is smaller than 1 in all states where �s > 0. The

higher is the insured fraction �s, the higher is overconsumption.8 We write

medical expenditures as a function Ms(�s) of the insurance rate and we

de�ne the elasticity of medical expenditure with respect to the insurance

rate as �s =
�s
Ms

dMs
d�s
.

The optimal insurance problem now becomes

max
�1;:::;�S

� =
X
s

ps [fs(Ms(�s)) + g(W � � � (1� �s)Ms(�s))]

subject to

� = (1 + �)
X
s

ps�sMs(�s):

This yields the �rst-order conditions

@�

@�s
= ps

�
f 0s
dMs

d�s
+ g0s

�
Ms � (1� �s)

dMs

d�s

��

�(1 + �)ps
�
Ms + �s

dMs

d�s

�X
t

ptg
0
t 6 0; (10)

�s
@�

@�s
= 0: (11)

Using eq. (9) and the de�nition of �s, we can simplify eq. (10) as

@�

@�s
= psMs

�
g0s � g0 (1 + �) (1 + �s)

�
(12)

8The �rst-best result obtains if �s = 0. If �s = 1; one gets f 0s = 0:
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Combing (11) and (12) we immediately derive the characteristics of the

optimal insurance policy:

either �s = 0 or g0s = (1 + �)g
0(1 + �s) (13)

It is instructive to compare eqs. (13) and (7). If the demand elasticities

in the di¤erent health states are equal, i.e. �s = � for all s, we are back

to the deductible result of Arrow�s theorem, but with the loading factor

(1 + �) blown up by the moral hazard factor (1 + �). Not surprisingly, the

deductible will therefore be larger than in the �rst-best. More generally, the

solution is characterized by an �implicit deductible� property, where the

deductible increases with �s. We formulate this result as

Proposition 1 If resources are state-independent, preferences are separable
with state-independent consumption preferences and the probabilities of the

di¤erent states cannot be in�uenced by the consumer, the optimal insurance

contract results in the same indemnities as a contract with 100% insurance

above a variable deductible positively related to �s, the elasticity of medical

expenditures with respect to the insurance rate �s.

It is important to interpret Proposition 1 correctly. Consider the special

case with �s = � for all s. This case is not devoid of interest. Indeed, the

empirical information on the di¤erences between the demand elasticities in

di¤erent health states is limited, and in many cases the best one has is a

global estimate which can be interpreted as an �average��. One could then

apply (13) with this common �. This will in general be suboptimal, but

there is a saving grace: the uncertainty about � is borne by the insurer, not

the insured; and the insurer is compensated for bearing uncertainty through

the loading factor �. This strongly suggests that a deductible (or a stop-

loss arrangement) should be an important feature in any optimal insurance

policy. Note, however, that (13) characterises a second-best insurance pol-

icy implemented through the variable insurance rates �s = (Ms � D)=Ms,

not through the explicit announcement of a deductible D. Indeed, if the

indemnities �sMs were formulated as Ms � D, then the �rst-order condi-
tions (9) should be replaced by f 0s(Ms) = 0, re�ecting the fact that the

insured perceives a marginal cost of medical expenditures equal to 0 in that

case. Moreover, one can argue that health states are costly to verify and
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that the assumption of state-speci�c insurance rates is therefore unrealis-

tic.9 This need not always be true. One could for instance think about

a model with two states: a �good�health state in which only ambulatory

care is needed and a �bad�health state with a hospitalization and intensive

follow-up treatment. These states are readily veri�able and our proposition

1 then gives an immediate justi�cation for the feature present in many real

world systems of a higher insurance rate for hospital expenditures. Yet, in

general we are ready to admit that the rule (13) has limited applicability. In

the next section we will therefore analyse a setting with an explicit stop-loss

arrangement.

The fact that the results in this section do not lend themselves easily to

implementation, does not mean that our qualitative �ndings are devoid of

practical implications. Let us summarize the most important ones. First,

our results con�rm the intuition that insurance rates should (ceteris paribus)

be inversely related to the elasticity of health care expenditures with re-

spect to the insurance rate and positively related to risk aversion. More

importantly, they also validate the practice of (ceteris paribus) higher in-

surance rates (not only indemnities) for major medical expenses. Note that,

if �s = �t, it follows from eq. (13) that (1��s)Ms = (1��t)Mt �and there-

fore �s > �t if Ms > Mt. This is an important qualitative �nding, which

obviously cannot be recovered in a linear model with a �xed insurance rate.

Second, our results suggest an easy empirical procedure for the ex post-

evaluation of existing systems of health insurance on the basis of information

about individual out-of-pocket payments. This information is often avail-

able. If interindividual di¤erences in risk aversion are not too large and

if demand elasticities in the di¤erent health states can be assumed to be

equal, an optimal insurance scheme should put an income-dependent ceiling

on these out-of-pocket payments in di¤erent states. More generally, out-

of-pocket payments should be linked in a straightforward way to demand

elasticities. One could either use the available information about demand

elasticities to check the optimality of the existing scheme, or derive the �im-

plicit� demand elasticities which would make the existing scheme optimal

and check if they show a reasonable pattern.

9Moreover, if a su¢ ciently re�ned classi�cation of health states were veri�able, there

would be no need to specify the indemnity through the insurance rate. One could as well

de�ne a lump-sum indemnity, speci�c to state s: this would immediately solve the moral

hazard-problem.
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Third, our results strongly suggest that the common assumption of a

constant insurance rate �s = �, identical in all states, is suboptimal. The

optimal medical insurance scheme will in general be nonlinear. This suggests

a comparison with Blomqvist (1997). Blomqvist assumes that a random

state-of-the-world variable represents exogenous shocks to the consumer�s

health status and is not observable to the insurer: the amount to be paid

to the consumers can only depend on their health care expenditures. The

qualitative results he derives from the resulting optimal control problem are

analogous to our �ndings in (13). More speci�cally, he emphatically rejects

the optimality of a linear scheme with a �xed insurance rate and shows that

there should be more generous insurance for larger expenditures, conditional

on the demand elasticities. Our vector of insurance rates (�1; :::; �S) can be

seen as a discrete approximation of his non-linear scheme; this is especially

obvious when considering his numerical illustration, in which he implements

a discrete version of his general model.

4 Third best: Ex post moral hazard under an ex-
plicit deductible

The previous analysis strongly suggests that some stop-loss feature should

be part of the optimal insurance policy, even in a setting with ex post moral

hazard: this simply re�ects the original intuition of Arrow�s theorem that

it is optimal to focus insurance on the states with the largest expenditures.

Moreover, as noted before, stop-loss arrangements are indeed present in

many contracts and countries and played an important role in the RAND-

experiment. However, as we explained in the previous section, the second

best-insurance scheme with state-speci�c �s cannot be implemented as such.

We therefore turn now to what could be called a �third best�-policy, in which

an explicit stop loss arrangement is introduced into the health insurance

contract. We will show that such a stop-loss arrangement should take the

form of a deductible, i.e. there should be no insurance for expenses below

the stop-loss amount.

When the insurance policy refers explicitly to an upper bound D on the

medical expenses borne by the insured, then (s)he will choose ex post Ms

such that f 0s(Ms) = 0 whenever Ms > D �instead of f 0s = (1 � �s)g0s as in
eq. (9). Therefore, overconsumption will increase. This has implications for
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the structure of the insurance rates �s in the states with Ms < D.

With an explicit stop-loss, the optimal policy problem becomes

max
�s;D

� =
X
Ms<D

ps [fs(Ms(�s)) + g(W � � � (1� �s)Ms(�s))]

+
X
Ms>D

ps [fs(Ms) + g (W � � �D)] (14)

under the constraints

� = (1 + �)

24 X
Ms<D

ps�sMs(�s) +
X
Ms>D

ps(Ms �D)

35 (15)

f 0s = (1� �s)g0s if Ms < D; f 0s = 0 if Ms > D: (16)

The �rst-order conditions for �s (for the states with Ms < D) are iden-

tical to those that were derived in the second best-setting of the previous

section �see eqs. (10), (11) and (12), leading to the conclusion (13), which

is repeated here for convenience:

either �s = 0 or g0s = (1 + �)g
0(1 + �s): (17)

In di¤erentiating � w.r.t. D, attention must be paid to the fact that

the two sums de�ning � are de�ned with reference to D. If (and only if)

there exists some s� such that Ms� = D, then raising D (in�nitesimally)

will transfer s� from the second sum to the �rst.10 Note that the cost to

the agent of Ms� = D is the same as would result from �s� = 0. We shall

evaluate @�
@D at unchanged Ms� and justify that procedure on the basis of

our conclusion. Accordingly:

@�

@D
= �

X
Ms>D

ps

"
g0s � (1 + �)

X
t

ptg
0
t

#
6 0; D

@�

@D
= 0: (18)

The argument of g is constant over all s such that Ms > D; namely W �
� �D: Write, as before, g0D for g0(W � � �D). Then (18) entails

either D = 0 or g0D = g
0(1 + �): (19)

Eq. (19) gives a clear rule for �xing the optimal value of D. Note that, if

medical expenses are very large in some states, g0 and therefore g0D and D

10Lowering D in�nitesimally will not trigger a transfer because Ms < D in the �rst

sum.
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may also be very large.11 Yet, this does not detract from the principle that

an optimal insurance plan should include a stop-loss arrangement.

Combining (17) and (19), we obtain

if �sD > 0; then g0s = g
0
D(1 + �s) > g

0
D:

With g(:) concave, g0s > g
0
D implies W � � � (1� �s)Ms < W � � �D; and

therefore Ms > D: This contradicts the condition Ms < D de�ning the �rst

sum. Accordingly, either �s = 0 or D = 0: Thus, if D > 0, then �s = 0, so

that Arrow�s theorem holds �without the condition that �s be independent

of s. Also, if �s� = 0; the assumption of unchanged Ms� underlying (18) is

veri�ed.

We can summarize these results as

Proposition 2 If resources are state-independent, preferences are separable
with state-independent consumption preferences and the probabilities of the

di¤erent states cannot be in�uenced by the consumer, an optimal stop-loss

insurance policy takes the form of a deductible, i.e. there is no reimburse-

ment for expenses below the stop-loss amount and full reimbursement of the

excess of expenses over the deductible.

Proposition 2 is a striking illustration of the strength of the logic un-

derlying Arrow�s theorem of the deductible. Even in a situation with ex

post moral hazard, it is optimal to spend insurance funds in the states with

the largest expenditures. It is not optimal to have insurance below the de-

ductible, even in a setting with ex post moral hazard. Additional arguments

are needed to justify the kind of �rst-dollar insurance arrangements that

were included in the RAND-experiment or that we observe in the Belgian

maximum billing-system.

5 Ex ante moral hazard

It has already been suggested in the literature that a deductible is not neces-

sarily optimal in health insurance contracts as soon as we take into account

11This is in line with the empirical results of Manning and Marquis (1996), who �nd

that an optimal plan with a stop-loss would imply a very high value for the latter and,

indeed, claim that they �were unable to �nd a plausible estimate of the optimal stop-loss

within the range of the Health Insurance Experiment data�(p. 631).
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the preventive value of some health services (e.g. Bardey and Lesur, 2005).

In this section we will further explore this argument. We distinguish two

possible cases. In subsection 5.1, we follow the literature (Ellis and Man-

ning, 2007; Zweifel et al., 2009) and model identi�able preventive actions

that are taken before the health state realizes. One can think about lifestyle

variables (such as smoking, drinking, dieting or physical activity) or about

general medical screening. We will show that such preventive actions should

in general be subsidized. In subsection 5.2, we assume that prevention is

linked to medical expenditures in relatively healthy states and that it is

impossible to distinguish the curative and the preventive component, for

instance in regular visits to the GP.12 This justi�es some insurance below

the deductible.

In both cases we retain the model of the previous section, i.e. a model

with an explicit deductible D. In order to bring out the e¤ect of prevention

with a maximum of clarity, we rely on a simpli�ed version of our model.

There are only two states of health, s and t, where s denotes a state of

�standard�health, whereas t corresponds to a disease calling for an expen-

sive therapy. As in the example given before, the �good�health state could

be one in which only ambulatory care is needed, while the �bad�health state

would require hospitalization and intensive follow-up treatment. As we have

shown in the previous section, under socially e¢ cient health insurance, the

high cost Mt will be largely covered, i.e. the expenses for the patient will

be limited to the deductible D. Moreover, if we do not take into account

the e¤ect of prevention, we found that in the optimum insurance contract

�s = 0:

5.1 General preventive behaviour

We denote the costs incurred for prevention by x: This preventive behaviour

lowers the probability that the agent ends up in the expensive bad health

state t; i.e. dpt
dx < 0 and d2pt

dx2
> 0. In this subsection we assume (i) that

the insured assesses correctly the impact of x on pt, and (ii) that x can be

subsidized as part of the insurance contract. Call the subsidy rate �:

12A di¤erent approach to prevention has been worked out in Eeckhoudt et al. (2008).

They compare (i) a strategy in which patients apply preventive measures before knowing

if they have the disease and (ii) a �wait and treat�strategy, in which patients are treated

only if they contract the disease.

13



The optimization problem then becomes

max
�s;D;�

� = (1� pt(x)) [fs(Ms) + g(W � (1� �)x� � � (1� �s)Ms)]

+pt(x) [ft(Mt) + g(W � (1� �)x� � �D)] (20)

subject to

� = (1 + �) [(1� pt(x))�sMs + pt(x)(Mt �D) + �x] :

Of course, the �rst order condition onD just becomes a simpli�ed version

of eq. (18)):

@�

@D
= �ptg0t + ptg0 (1 + �) 6 0; D

@�

@D
= 0 (21)

and the same is true for the �rst order condition (16) on �s �provided we

neglect the possible e¤ect of �s on x.

We focus here on the e¤ect of prevention. An agent that is insured with

a contract as speci�ed in the previous section (i.e. with �s = 0 and D > 0)

will decide about x without taking into account the e¤ect on the premium

�. This leads to the following condition:

@�

@x
j� =

dpt
dx
[ft + gt � (fs + gs)]�

�
(1� pt)g0s + ptg0t

�
(1� �) = 0: (22)

Note that, although the agent does not take into account the e¤ect on

the premium, he will still invest in prevention because of the utility gain

in moving from state t to state s. In fact, condition (22) is well known

in the literature on prevention and admits the same interpretation as the

�willingness-to-pay for safety�in the literature on the value of life (see, e.g.,

Dehez and Drèze, 1982). Indeed, it can be rewritten as

�
�
dpt
dx

��1
=
dx

dpt
=

(fs + gs)� (ft + gt)
[(1� pt)g0s + ptg0t] (1� �)

: (23)

The �willingness-to-pay for a lower probability of ending up in the expensive

bad health state� through extra prevention dx is equal to the ratio of (i)

the associated bene�t in utility terms (fs + gs)� (ft + gt), and (ii) the net
marginal utility cost of x, i.e. the expected marginal cost of one additional

unit of x, taking into account the subsidy rate �: It follows from eqs. (22)

and (23) that dxd� > 0.
13

13The impact of risk aversion and of prudence on optimal prevention has been analysed

by Dionne and Eeckhoudt (1985) and Eeckhoudt and Gollier (2005) respectively.
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Let us now look at the socially optimal value of x, i.e. taking into account

the e¤ect on the premium. This results in the following �rst-order condition

@�

@x
j� � g0(1 + �)

�
� + p0t(Mt �D � �sMs)

�
= 0: (24)

The additional term in this expression captures the e¤ect of changes in

x on the premium � (evaluated through g0). Under the assumption that

individuals choose x so as to satisfy eq. (22), we can immediately derive an

explicit solution for the optimal � :

� = p0t(x) [�sMs � (Mt �D)] : (25)

The subsidy rate � should obviously be zero if p0t(x) = 0, i.e. if prevention

is not e¤ective. It will be positive if Mt � D > �sMs: Note that this will

always be the case if �s = 0 as per a straight deductible scheme. Hence, we

can conclude that it is optimal to subsidize x. This result is close to that of

Ellis and Manning (2007).14

The treatment of prevention in this section does not o¤er an immediate

argument to move away from the straight Arrow-deductible result. Subsidiz-

ing preventive behaviour x can rather be seen as a complementary measure.

To give an example: subsidizing cancer screening will lower the premium by

lowering pt.

5.2 Treatment as prevention

It is often the case that regular doctor visits lead to an earlier diagnosis and

therefore improve the prospects of the patient, i.e. lower the probability

pt. Consulting a GP as soon as some symptoms are discovered may lead

to early detection of the threat of t and treatment of the disease at an

early stage may help avoiding to have to go to the emergency department

of the hospital, or may help avoiding more severe complications and hence

larger costs. The preventive aspect of these regular doctor visits cannot be

distinguished from the curative aspect, however. They are both included

in the expenditures Ms. Let us therefore now turn to a model in which

pt = pt(Ms) with
dpt
dMs

< 0:

The policy problem can then be formulated as follows

max
�s;D

� = (1� pt(Ms)) [fs(Ms(�s)) + g(W � � � (1� �s)Ms(�s))]

14Our expressions (22) and (24) are directly comparable to eqs. (12) and (13) in Ellis

an Manning (2007, p. 1138).
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+pt(Ms)) [ft(Mt) + g(W � � �D)]

subject to

� = (1 + �) [(1� pt(Ms))�sMs(�s) + pt(Ms)(Mt �D)] :

The �rst-order condition for D remains as in eq. (21). However, the condi-

tion on Ms (or �s) should now take into account the dependence of pt(:) on

Ms:

We follow the same procedure as in the previous subsection. We �rst

consider the decisions taken by an insured patient, who disregards the impact

of Mt �D on the premium �. The �private ��rst order condition on Ms

is then given by

@�

@Ms
j�=(1� pt)

�
f 0s � g0s(1� �s)

�
+
dpt
dMs

[ft + gt � (fs + gs)]=0: (26)

The �rst term in this condition is well-known from the previous sections

- see (9) or (16). The second term already appeared in the previous sub-

section (see eq. (22). This term will be positive if ft + gt is smaller than

fs + gs, which motivates the prevention. Therefore eq. (26) implies that

f 0s < g0s(1 � �s), meaning that expenditures Ms will be larger than in the

situation without prevention. Eq. (26) again admits an interpretation in

terms of marginal bene�ts and marginal costs, similar to eq. (23), but with

an adjusted de�nition of the marginal cost: this now becomes g0s(1��s) net
of the direct marginal bene�t f 0s.

The �rst order condition (26) may be compared with the condition de�n-

ing a socially e¢ cient level of Ms, i.e. taking into account the implications

of Ms for the premium �. This condition for social optimality is given by

(compare with eq. (24)):

@�

@Ms
=
@�

@Ms
j� � g0 (1+�)

�
(1�pt)�s+

dpt
dMs

(Mt�D��sMs)

�
=0: (27)

The last term in this expression re�ects the additional incentive for preven-

tive care linked to the associated reduction in �.

Just as we did for �, we can solve condition (27) explicitly for �s, under

the assumption that the insured selectsMs such that @�
@Ms

j� = 0. This yields

�s =
�psMs

1 + �psMs

(Mt �D)
Ms

(28)
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where we used the obvious property that dps
dMs

= � dpt
dMs

and de�ned �psMs
=

Msdps
psdMs

> 0, the elasticity of ps with respect toMs. This optimality condition

directly implies that �s should be larger than 0, unless �psMs
= 0; i.e. unless

there is no prevention e¤ect. We therefore �nd a justi�cation for some

insurance of the low �standard�medical expenses Ms below the deductible

� a departure from our result in section 4. Note that nothing guarantees

that �s, as de�ned in (28), satis�es �s 6 1: It can be optimal to subsidize
Ms if (Mt�D) and �psMs

are relatively large �and this holds even if � > 0:

This result is due to the fact that prevention helps containing insurance

costs and this remains justi�ed when � is high: the deterrent to insurance is

o¤set by the lower probability of the expensive therapy. In the more realistic

case (with 0 < �s < 1) �as would obtain for instance if the elasticity �psMs

is small enough �condition (28) provides a clear guideline for setting the

optimal �s.

While the analysis in this section was cast in terms of prevention, it is

closely related to the insights that are put forward by Goldman and Philip-

son (2007) in their model with many health care commodities. They ar-

gue that the optimal structure of cost-sharing should take account of the

complementarity and substitution relationships between these di¤erent com-

modities; for instance subsidising medicines can be justi�ed if the resulting

increase in pharmaceutical consumption (including improved medication ad-

herence) lowers hospital expenditures. The elasticity �psMs
in our analysis

plays the same role as the cross-price elasticities in the Goldman-Philipson

(2007)-model. In both cases, one �nds an argument for a lower level of pa-

tient cost-sharing for small health expenses if this decreases the probability

of larger expenditures. Our formulation in terms of probabilities seems at

least as natural as the one of Goldman and Philipson (2007).

Proposition 3 If resources are state-independent and preferences are sep-
arable with state-independent consumption preferences, the desirability of

preventive behaviour (lowering the probability of the expensive health states)

justi�es some insurance below the deductible (i.e. �s > 0) if health care

expenditures in a state of standard health have a negative e¤ect on the prob-

ability of getting into a state with large medical expenses, but the preventive

component of these expenditures cannot be identi�ed as such.
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6 Conclusion

We have shown that the logic of Arrow�s theorem of the deductible, i.e. that

it is optimal to focus insurance on the states with largest expenditures, re-

mains at work in a model with ex post moral hazard. The optimal insurance

contract in a situation with ex post moral hazard takes the form of a system

of �implicit deductibles�, i.e. it results in the same indemnities as a contract

with 100% insurance above a variable deductible positively related to the

elasticity of medical expenditures with respect to the insurance rate. This

optimal scheme can seldom be implemented as such. We therefore turned

to an insurance scheme with an explicit stop-loss and showed that the com-

mon practice of �rst-dollar insurance is not optimal in this standard model:

there should be no reimbursement for expenses below the stop-loss amount.

Again, the logic of Arrow�s theorem remains fully relevant.

Additional arguments are needed to justify the common practice of �rst-

dollar insurance. In this respect we introduced the possibility of preventive

bene�ts and showed that some insurance below the deductible is optimal if

health care expenditures in relatively healthy states have a negative e¤ect

on the probability of getting into a state with large medical expenses, as will

be the case e.g. for regular visits to a general practitioner. Other possible

arguments, not developed in this paper, could relate to the existence of

externalities not apt to be taken into account by the insured, for instance

risks of contagion, or the possibility that patients (and doctors) are poorly

informed about the e¤ectiveness of di¤erent treatments and should be guided

in the direction of optimal treatment choices by a clever design of cost-

sharing (Chernew et al., 2007; Pauly and Blavin, 2008). A more thorough

analysis of the latter argument calls for the explicit modelling of speci�c

health care services, a topic that lies outside the scope of this paper.

We worked within a model with a discrete number of (mutually exclu-

sive) health states. This makes it possible to derive transparent results

easily �more easily in any case than with the optimal control approach

explored by Blomqvist (1997). In fact, we have shown that the optimal

health insurance policy will in general be nonlinear, and that the most pop-

ular modelling strategy, assuming a linear insurance scheme with a �xed

coinsurance rate, may yield misleading results. Moreover, despite the re-

strictions of our model, it still allows us to recover the results on prevention

of Ellis and Manning (2007) and the basic intuition of the importance of
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o¤set-e¤ects as argued by Goldman and Philipson (2007).

The optimality of some stop-loss arrangement seems a quite robust result

� it directly follows from the equally robust intuition that it is better for

the consumer to insure expenses when disposable income is low rather than

high. This immediately suggests the important issue of the time dimension

of insurance, which was left open in this paper. In practice most stop-loss

arrangements are based on a �xed time period, usually one year. In theory,

however, optimal insurance should take a life-time perspective � possibly

implemented through some form of �cumulative averaging.�Exploring the

implications of this, e.g. for the optimal compensations for the chronically

ill, is a topic for further research. Moreover, in this paper we focused on

the optimal design of the health insurance contract from the perspective

of an individual insured. In public health insurance schemes redistributive

considerations may play an important role �the logic of Arrow�s theorem

then suggests the introduction of an income-dependent stop loss. Yet, a full

analysis of such public health insurance scheme would require the explicit

speci�cation of a social welfare function and a careful consideration of the

relationship between health insurance and other redistributive instruments,

mainly the nonlinear income tax. This is also left for further research.
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