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1 Introduction

We often model a strategic situation as a complete information game. However, it is well known
now that equilibrium outcomes of a complete information game may be very different from the
outcomes of an arbitrarily “close” incomplete information game.1 When can we justify an as-
sumption of common knowledge of payoffs, implicit in the definition of complete information
games? One answer, proposed by Kajii and Morris [5], is to require an equilibrium to be robust
to incomplete information. An equilibrium of a complete information game is robust if every
incomplete information game with payoffs almost always as in the original game has a Bayesian
Nash equilibrium that induces an observed behavior close to the equilibrium of complete infor-
mation game. If an equilibrium is robust, then the simplifying assumption of common knowledge
can be justified. Unfortunately, robust equilibrium may not exists. To guarantee existence, Mor-
ris and Ui [8] extend such a robustness to a set-valued notion. A set of equilibria is robust if every
incomplete information game close to the the original game has a Bayesian Nash equilibrium that
induces an observed behavior close to some equilibrium in the set.

To give a sufficient condition for robustness of sets of equilibria we introduce games with a
saddle function. A saddle function is a real valued function on the set of action profiles such that,
for one player, minimizing the function implies choosing her best-response, and, for the other
players, maximizing it implies choosing their best-responses. The value of a game with a saddle
function is a minimax value attained when the saddle function is minimized over strategies of one
player and maximized over distributions on action profiles of the other players. Our condition
says that the set of correlated equilibria that induce an expectation of a saddle function equal
to the value of the game is robust if it contains a Nash equilibrium.

A game with a saddle function can be viewed as “strategically equivalent” to a zero-sum game
where a set of players with identical payoffs plays against a single adversary. We call such zero-
sum games, studied by von Stengel and Koller [14], team vs. adversary games. As an illustrative
example consider a three-person game below.

L R
U 1, 1,−1 −1,−1, 1
D −2,−2, 2 0, 0, 0

T
L R

U 2, 2,−2 −2,−2, 2
D −1,−1, 1 3, 3,−3

B

(a) Three-person team vs. adversary game.

(U, L) (U, R) (D,L) (D, R)
T 1 −1 −2 0
B 2 −2 −1 3

(b) Auxiliary two-person zero-sum game.

1See for example Rubinstein [10] or Carlsson and van Damme [2].
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In game (a) on the left team players are Row and Column choosing a row and a column
respectively; adversary chooses a matrix. A payoff function of the auxiliary two-person zero-sum
game (b) where we regard Row and Column as a single maximizing player and adversary as
a minimizing player is a saddle function of the original three-person game (a). The minimax
value of the auxiliary zero-sum game and thus the value of game (a) is 1. Observe that a Nash
equilibrium profile (U,L, T ) is a unique correlated equilibrium of game (a) that induces the
expectation of the saddle function equal to 1. Our result implies that (U,L, T ) is robust.

The notion of robust equilibrium is introduced by Kajii and Morris [5] who also give first
sufficient conditions in terms of a unique correlated equilibrium and p-dominant equilibrium.
As a corollary of the robustness of a unique correlated equilibrium, in two-person zero-sum
games, a unique Nash equilibrium is robust to incomplete information. Next, Ui [12] proves the
robustness of a unique maximizer of a potential function defined by Monderer and Shapley [7].
Two approaches are unified and generalized by Morris and Ui [8] with the notion of a generalized
potential function. Although a generalized potential provides a powerful tool to study robust sets
of equilibria, finding it may be difficult. This leads Morris and Ui [8] to develop three special but
tractable classes of generalized potential functions: best response potentials, monotone potentials
and local potentials. Similarly, Tercieux [11] obtains a simple condition for games with p-best
response sets, which is a special case of a generalized potential result. Further, Oyama and
Tercieux [9] generalize the sufficient condition in terms of monotone potential maximizers using
iterated monotone potential functions. All these conditions are generally not applicable to games
with a saddle function, in particular to team vs. adversary games. In this paper we exploit a
saddle function to find nontrivial robust sets of equilibria in games outside the scope of the
existing results.

Our contribution is to provide a new and tractable sufficient condition for robustness. The
condition unifies and generalizes those in terms of zero-sum and best-response potential games.
Although the condition is easier than the one in terms of generalized potential maximizers, it can
guarantee the robustness of strictly smaller sets of equilibria. This implies that our condition is
independent of the other conditions in the literature.2

The rest of the paper is organized as follows. In the next section we provide basic definitions.
In Section 3, we introduce a saddle function and state the main result. In Section 4, we prove
the main result. We conclude with the discussion of the related literature in Section 5.

2We also show that the notion of a saddle function can be extended in a similar way the notion of a potential
function is extended to a generalized potential by Morris and Ui [8].
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2 Robust sets of equilibria

A complete information game consists of a finite set of players N and, for each i in N , a finite
set of actions Ai and a payoff function gi : A → R, where A =

�
i∈N Ai. Since we fix the set

N of players and the set A of action profiles, we simply denote a complete information game by
g := (gi)i∈N . Conventionally, for a profile (Xi)i∈N of sets, we write X :=

�
i∈N Xi; for i ∈ N ,

X−i :=
�

k �=i Xk. We write x := (xi)i∈N ∈ X; for i ∈ N , x−i := (xk)k �=i ∈ X−i. For T ⊂ N , we
write XT :=

�
i∈T Xi and xT := (xi)i∈T ∈ XT . A set of probability distributions on a set X is

denoted by ∆(X).
An action distribution µ ∈ ∆(A) is a correlated equilibrium of g if, for each i ∈ N and each

ai ∈ Ai with µi(ai) > 0,

�

a−i∈A−i

µ(a−i|ai)gi(ai, a−i) ≥
�

a−i∈A−i

µ(a−i|ai)gi(a
�
i, a−i)

for each a
�
i ∈ Ai, where µi(ai) is the marginal probability of ai and µ(a−i|ai) is the conditional

probability of a−i given ai. A profile (µi)i∈N ∈
�

i∈N ∆(Ai) is a Nash equilibrium of g if µ ∈ ∆(A)

with µ(a) =
�

i∈N µi(ai) for all a ∈ A is a correlated equilibrium of g.
Consider an incomplete information game with the set N of players and the set A of action

profiles (same as in g). Let Θi be a countable set of types of a player i ∈ N , and let P be the
common prior probability distribution on Θ with Pi(θi) :=

�
θ−i∈Θ−i

P (θi, θ−i) > 0. A payoff
function of a player i ∈ N is a bounded function ui : A×Θ → R. Since we also fix the set Θ of
type profiles, we denote an incomplete information game by (u, P ), where u := (ui)i∈N .

For a player i ∈ N a strategy is a function σi : Θi → ∆(Ai). Let Σi be a set of i’s strategies.
We write σi(ai|θi) for the probability that an action ai ∈ Ai is chosen given a type θi ∈ Θi under
a strategy σi ∈ Σi. For a subset T of N , a probability of an action profile aT ∈ AT given a type
profile θT ∈ ΘT under a strategy profile σT ∈ ΣT is denoted by σT (aT |θT ) :=

�
i∈T σi(ai|θi).

A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of (u, P ) if, for each i ∈ N and
θi ∈ Θi,

�

θ−i∈Θ−i

P (θ−i|θi)
�

a∈A

σ(a|θ)ui(a, θ) ≥
�

θ−i∈Θ−i

P (θ−i|θi)
�

a∈A

σ
�
i(ai|θi)σ−i(a−i|θ−i)ui(a, θ)

for all σ
�
i ∈ Σi, where P (θ−i|θi) = P (θi, θ−i)/Pi(θi).

Given a complete information game g and an incomplete information game (u, P ), for each
i ∈ N , consider the subset Θ̄i of Θi such that, if θi ∈ Θ̄i is realized, i’s payoffs are given by gi
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and he knows his payoffs:

Θ̄i = {θi ∈ Θi|ui(a, (θi, θ−i)) = gi(a) for all a ∈ A, θ−i ∈ Θ−i with P (θi, θ−i) > 0}.

An incomplete information game (u, P ) is an ε-elaboration of g if P (Θ̄) = 1 − ε, where
ε ∈ [0, 1]. Kajii and Morris [5] prove following useful lemma.

Lemma 1. Let {(um
, P

m)} be a sequence of ε-elaborations with ε
m → 0 and let σ

m
be a Bayesian

Nash equilibrium of (um
, P

m). Then there exist a subsequence {σl} of {σm} and a correlated

equilibrium µ ∈ ∆(A) of g such that
�

θ∈Θ P
l(θ)σl(a|θ) → µ(a) for each a ∈ A.

A type θi ∈ Θi\Θ̄i of a player i ∈ N is committed if it has a strictly dominant action a
θi
i ∈ Ai:

ui

�
(aθi

i , a−i), (θi, θ−i)
�

> ui ((ai, a−i), (θi, θ−i))

for each ai ∈ Ai\{aθi
i }, a−i ∈ A−i and all θ−i ∈ Θ−i with P (θi, θ−i) > 0. An ε-elaboration of g is

canonical if, for each i ∈ N , each θi ∈ Θi\Θ̄i is a committed type.
Morris and Ui [8] study the sets of correlated equilibria robust to canonical elaborations.

Definition 1. A set E ⊆ ∆(A) of correlated equilibria is robust to canonical elaborations in g if,
for each δ > 0, there exists ε̄ > 0 such that, for all ε < ε̄, each canonical ε-elaboration of g has
a Bayesian Nash equilibrium σ ∈ Σ with maxa∈A |µ(a)−

�
θ∈Θ P (θ)σ(a|θ)| ≤ δ for some µ ∈ E .

Notice that if a set E is a singleton, then the correlated equilibrium in the set is a Nash
equilibrium distribution robust to canonical elaborations in a sense of Kajii and Morris [4].

The reason to consider a set-valued notion is that robust equilibrium may not exist, as shown
in Kajii and Morris [5].3 On the contrary, robust set always exists, though maybe trivially as a
set of all correlated equilibria.

Originally, the stronger notion of robustness to all elaborations was proposed by Kajii and
Morris [5]. To get a corresponding set-valued notion one allows for all, not only canonical ε-
elaborations in Definition 1. It is clear that a set of correlated equilibria robust to all elaborations
is also robust to canonical elaborations.4

3 Saddle points and robust sets of equilibria

In a complete information game fix a player j in N and the set T of the other players. A saddle
function is a real-valued function f on the set of action profiles such that, for each member i of T ,

3In fact, Haimanko and Kajii [3] show that even two-person zero-sum game may have no robust equilibrium.
4Whether the converse holds is an open question.
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every best-response against his belief over the other players’ actions in a game where i’s payoff is
given by f is a best-response against the same belief in the original game; and j’s best-response
against her belief over the other players’ actions in a game where j’s payoff is given by −f is a
best-response against the same belief in the original game as well.5

Definition 2. Let j ∈ N and T := N\{j}. A function f : A → R is a j-saddle function of g if,
for each i ∈ T,

arg max
ai∈Ai

�

a−i∈A−i

λi(a−i)f(a) ⊆ arg max
ai∈Ai

�

a−i∈A−i

λi(a−i)gi(a)

for all λi ∈ ∆(A−i); and for j,

arg min
aj∈Aj

�

aT∈AT

λj(aT )f(a) ⊆ arg max
aj∈Aj

�

aT∈AT

λj(aT )gj(a)

for all λj ∈ ∆(AT ). A value of f is v
∗ := maxµT∈∆(AT ) minµj∈∆(Aj)

�
a∈A µT (aT )µj(aj)f(a). A

Nash equilibrium (µ∗i )i∈N ∈
�

i∈N ∆(Ai) is a saddle point of f if
�

a∈A

��
i∈N µ

∗
i (ai)

�
f(a) = v

∗
.

In what follows we fix g, a player j in N and a j-saddle function f of g with a saddle point
(µ∗i )i∈N ∈

�
i∈N ∆(Ai). Therefore, abusing notation, we simply say that f is a saddle function

and omit reference to f when discussing a value and saddle points.
A game with a saddle function does not have a saddle point if the set of maximinimizers

of f does not contain a product distribution. On the other hand, it is clear that, if a product
distribution is a maximinimizer of a saddle function, then it is generated by a saddle point.

Games with a saddle function generalize best-response potential games introduced in Morris
and Ui [8]: add a dummy player j with a singleton action set to a best-response potential
game, now a best-response potential function is a saddle function and a best-response potential
maximizer, a saddle point.

Let E be a set of correlated equilibria of g inducing an expectation of f equal to v
∗:

E := {µ ∈ ∆(A)|µ is a correlated equilibrium of g and
�

a∈A µ(a)f(a) = v
∗}.

We are ready to state the main result of the paper.

Theorem 1. If g has a saddle function with a saddle point, then the corresponding set E is

robust to canonical elaborations in g.

Generally, a set E is not a singleton. If E is a singleton and there exists a saddle point, then
the unique Nash equilibrium distribution in the set is robust to canonical elaborations.

5Note that games with a j-saddle function is a special class of multi-potential games introduced by Monderer
[6], or games with a partition {{j}, T}-potential introduced by Uno [13].
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4 Proof of the main result

Let (u,P ) be a canonical ε-elaboration of g. Define a function V : Σ → R by

V (σ) :=
�

θ∈Θ

�

a∈A

P (θ)σ(a|θ)f(a).

For each i ∈ N , let Σ̄i := {σi ∈ Σi|σi(a
θi
i |θi) = 1 for all θi ∈ Θi \ Θ̄i} be a set of strategies

such that all committed types choose their dominant actions. A Bayesian Nash equilibrium
(σ∗T , σ

∗
j ) ∈ Σ of an ε-elaboration (u,P ) is a quasi-saddle point of (u,P ) if

σ
∗
T ∈ arg max

σT∈Σ̄T

min
σj∈Σ̄j

V (σT , σj).

A saddle point of g is a quasi-saddle point of a degenerate 0-elaboration of g where Θi is a
singleton for each i in N . The key observation is that for canonical ε-elaborations with ε close
to zero, quasi-saddle points induce a value of V close to v

∗.
The following generalization of von Stengel and Koller’s [14] result on team vs. adversary

games guarantees the existence of a quasi-saddle point in every canonical ε-elaboration of g.6

Lemma 2. Let j ∈ N and T := N\{j}. Consider a game (N, (Si)i∈N , (gi)i∈N) such that,

for each i ∈ T , gi = f and gj = −f , where f : S → R is a continuous multilinear func-

tion. For each i ∈ N , suppose that Si is a compact convex subset of a locally convex Haus-

dorff space. Then, arg maxsT∈ST
minsj∈Sj f(sT , sj) is nonempty. Furthermore, for each s

∗
T ∈

arg maxsT∈ST
minsj∈Sj f(sT , sj), there exists s

∗
j ∈ Sj such that (s∗T , s

∗
j) is a Nash equilibrium.

7

If we let a game in Lemma 2 have Si = Σ̄i for each i ∈ N and f = V , then we can show that
(s∗T , s

∗
j) is a quasi-saddle point of a canonical ε-elaboration (u,P ).

Lemma 3. Every canonical ε-elaboration of g has a quasi-saddle point.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Suppose that (µ∗i )i∈N ∈
�

i∈N ∆(Ai) is a saddle point of g. Fix a canonical
ε-elaboration (u, P ) of g. By Lemma 3 there exists a quasi-saddle point σ ∈ Σ of (u, P ). First,
we shall find a lower and an upper bounds on V (σ). For each i ∈ T and each θi ∈ Θ̄i, let σ

∗
T ∈ Σ̄T

be such that σ
∗
i (ai|θi) = µ

∗
i (ai) for each ai ∈ Ai. Since σT ∈ arg max

σ�
T
∈Σ̄T

minσ�j∈Σ̄j
V (σ�T , σ

�
j), we

have V (σT , σj) ≥ minσ�j∈Σ̄j
V (σ∗T , σ

�
j).

6The proofs omitted in the text are referred to Appendix A.
7Note that Sion’s minimax theorem is not applicable in this case since f is not quasi-concave in sT . Note also

that in a finite game Si is a set of mixed strategies, i.e. a finite dimensional simplex.
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Let εT ≥ 0 be a marginal probability that there exists a player in T of committed type, i.e.,
εT := P

�
(ΘT \ Θ̄T )×Θj

�
≤ ε. By definition of V for each σ

�
j ∈ Σ̄j we have

V (σ∗T , σ
�
j) =

�

θ∈(ΘT \Θ̄T )×Θj

P (θ)
�

a∈A

σ
∗
T (aT |θT )σ�j(aj|θj)f(a)

+
�

θ∈Θ̄T×Θj

P (θ)
�

a∈A

�
�

i∈T

µ
∗
i (ai)

�
σ
�
j(aj|θj)f(a)

≥ εT fmin +
�

θ∈Θ̄T×Θj

P (θ)
�

a∈A

�
�

i∈T

µ
∗
i (ai)

�
σ
�
j(aj|θj)f(a),

where fmin := mina∈A f(a). Observe that
�

a∈A

��
i∈T µ

∗
i (ai)

�
µj(aj)f(a) ≥ v

∗ for all µj ∈ ∆(Aj),
since (µ∗i )i∈N ∈

�
i ∆(Ai) is a saddle point. It follows that

εT fmin + (1− εT )v∗ ≤ εT fmin +
�

θ∈Θ̄T×Θj

P (θ)
�

a∈A

�
�

i∈T

µ
∗
i (ai)

�
σj(aj|θj)f(a).

Therefore εT fmin + (1− εT )v∗ ≤ V (σ). By the symmetric argument for player j we get V (σ) ≤
εjfmax + (1 − εj)v∗, where fmax := maxa∈A f(a) and εj := P

�
ΘT × (Θj \ Θ̄j)

�
≤ ε. Combining

lower and upper bounds, we obtain

εT (fmin − v
∗) ≤ V (σ)− v

∗ ≤ εj(fmax − v
∗). (1)

To complete the proof we show that for each δ > 0, there exists ε̄ > 0 such that, for
all ε ≤ ε̄, each canonical ε-elaboration of g has a Bayesian Nash equilibrium σ ∈ Σ with
maxa∈A |µ(a)−

�
θ∈Θ P (θ)σ(a|θ)| ≤ δ for some µ ∈ E .

To get a contradiction suppose that for some δ > 0 there exists a sequence {(um
, P

m)} of
canonical ε-elaboration of g with ε

m → 0 such that maxa∈A |
�

θ∈Θ P
m(θ)σm(a|θ)−µ(a)| > δ for

all µ ∈ E , where σ
m ∈ Σ is a quasi-saddle point of (um

, P
m). By Lemma 1 there exist a subse-

quence {σl} of {σm} and a correlated equilibrium ν ∈ ∆(A) of g such that
�

θ∈Θ P
l(θ)σl(a|θ)

→ ν(a) for all a ∈ A. Since σ
l ∈ Σ is a quasi-saddle point of (ul

, P
l), by (1) we have

�
a∈A ν(a)f(a) = v

∗. Therefore ν ∈ E . The contradiction completes the proof.
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5 Discussion

5.1 Generalized potentials

Morris and Ui [8] use the generalized potentials to find robust sets of equilibria. Generalized
potentials are real-valued functions defined on the domain A =

�
i∈N Ai where for each i ∈ N ,

a set Ai ⊆ 2Ai\{∅} is a covering of Ai. That is Ai is a collection of nonempty subsets of Ai such
that

�
Xi∈Ai

Xi = Ai. Given a nonempty subset S ⊆ N and ΛS ∈ ∆(AS) let

∆ΛS(AS) : = {λ ∈ ∆(AS)|λ(aS) =
�

XS∈A

ΛS(XS)λXS(aS) for each aS ∈ AS and

λ
XS ∈ ∆(AS) with

�

aS∈XS

λ
XS(aS) = 1 for each XS ∈ AS}

be the set of distributions over AS induced by ΛS.
A function F : A → R is a generalized potential function of g if, for each i ∈ N , all

Qi ∈ ∆(A−i) and all qi ∈ ∆Qi(A−i),

Xi ∩ arg max
a�i∈Ai

�

a−i∈A−i

qi(a−i)gi(a
�
i, a−i) �= ∅

for every Xi ∈ arg max
X�

i∈Ai

�

X−i∈A−i

Qi(X−i)F (X �
i, X−i)

such that Xi is maximal in the argmax set ordered by the set inclusion relation. An action
subspace X

∗ is a generalized potential maximizer (GP-maximizer) if F (X∗) > F (X) for each
X ∈ A \ {X∗}. Consider a set

EX∗ := {µ ∈ ∆(A)|µ is a correlated equilibrium of g such that
�

a∈X∗ µ(a) = 1}.

Morris and Ui [8] show the following result.

Theorem 2. If g has a generalized potential function with a GP-maximizer X
∗
, then EX∗ is

robust to canonical elaborations in g.

Theorem 2 is the most general known sufficient condition for robustness of sets of equilibria.
However, in the example below we demonstrate that Theorem 1 guarantees robustness of strictly
smaller sets than Theorem 2 of Morris and Ui [8]. Therefore Theorem 1 establishes robustness
results for the class of games uncovered by the existing literature.

Example 1. Consider a three-player game above. Row, Column and Matrix are choosing a
row, a column and a matrix respectively. The payoff function is a saddle function. It is easy

9



L R

U 3, 3,−3 −1,−1, 1
D −1,−1, 1 −1,−1, 1

TL

L R

U −1,−1, 1 −1,−1, 1
D 3, 3,−3 −1,−1, 1

BL

L R

U −1,−1, 1 −1,−1, 1
D −1,−1, 1 3, 3,−3

TR

L R

U −1,−1, 1 3, 3,−3
D −1,−1, 1 −1,−1, 1

BR

to verify that the set E consists from all convex combinations of distributions generated by
strategy profiles where Row and Column randomize with probabilities (1

2 ,
1
2) over their actions

and Matrix randomizes with Prob(TL) = Prob(TR) = x and Prob(BL) = Prob(BR) = y where
2(x + y) = 1 and x, y ≥ 0. These distributions are Nash equilibrium distributions of the game.
But, a GP-maximizer must include some inferior pure strategy equilibrium for Row and Column
like (D, R, TL) with their payoff equal to −1.

A best-response potential function introduced by Morris and Ui [8] is a special case of a
generalized potential when the domain is simply Ai = {{ai}|ai ∈ A} for each i in N . One might
wonder whether a saddle function has a similar generalization. Indeed, we can define a “gener-
alized” saddle function with a domain being a covering of an action set for each player. Under
appropriate assumptions we obtain the result analogous to the robustness of GP-maximizer. We
refer the construction to Appendix B.

5.2 Team vs. adversary games

A special case of games with a saddle function are games of a team vs. adversary studied by
von Stengel and Koller [14]. In g let j ∈ N and T := N\{j}. We call j an adversary and T

a team. A game is a team vs. adversary game if gi = f for each i ∈ T and gj = −f , where
f : A → R. A set of mixed strategies of i ∈ N is Si := ∆(Ai). A team-maximin strategy profile is
s
∗
T ∈ ST such that s

∗
T ∈ arg maxsT∈ST

minsj∈Sj

�
a∈A (

�
si(ai)) f(a). A team-maxmin equilibrium

is a Nash equilibrium s ∈ S such that sT ∈ ST is a team-maximin strategy profile. The following
result of von Stengel and Koller [14] is a special case of Lemma 2.

Theorem 3. Any team-maximin strategy profile is a part of a team-maximin equilibrium.

A team players’ payoff function is a saddle function of a team vs. adversary game. A saddle
point, if it exists, is a team-maximin equilibrium, but converse does not hold. Von Stengel and
Koller [14] suggest that a team-maxmin equilibrium is the most reasonable solution to a team
vs. adversary games and therefore is an appropriate method of equilibrium selection. However,
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in the following example we show that a unique team-maxmin equilibrium may not be robust to
canonical elaborations.

Example 2. A three-player game below has a unique team-maximin equilibrium (U,L, B).

L R

U 1, 1,−1 −1,−1, 1
D −1,−1, 1 −1,−1, 1

T

L R

U 0, 0, 0 −1,−1, 1
D −1,−1, 1 1, 1,−1

B

Notice that this game does not have a saddle point. We shall show that the team-maximin
equilibrium (U,L, B) is not robust to canonical elaborations. Consider the following ε-elaboration
of the game above. A Row and a Column players’ sets of types are ΘR = {0, 1, 2, . . . } and
ΘC = {1, 2, . . . } respectively; the adversary has a single type θA. We represent the probability
distribution on type profiles in a table below, where rows and columns are Row and Column’
types respectively:

1 2 3 · · · m m + 1 · · ·
0 ε 0 0 · · ·
1 ε(1− ε) ε(1− ε)2 0 · · ·
2 0 ε(1− ε)3

ε(1− ε)4

...
...

... . . .
m ε(1− ε)2m−1

ε(1− ε)2m · · ·
m + 1 0 ε(1− ε)2m+1 · · ·

...
...

... . . .

Formally the probability distribution on type profiles is given by

P (θR, θC , θA) =






ε(1− ε)2m−1 if θR = θC = m,

ε(1− ε)2m if θR = m, θC = m + 1,

0 otherwise.

Let θR = 0 be a committed type of Row with the strictly dominant action D. All other
types of Row as well as all types of Column and the adversary have payoffs as in the complete
information game. Observe that ε(1−ε)2m−1

ε(1−ε)2m+ε(1−ε)2m >
1
2 for all ε > 0. Hence, by induction,

when the adversary chooses B with probability greater or equal to 2
3 , for all types of Row and

Column dominant actions are respectively D and R. Thus, we can find a sequence of canonical
ε-elaborations with all equilibrium distributions bounded away from (U,L, B).

In case of team vs. adversary games condition of Theorem 1 has an intuitive interpretation.
Call the difference between the best correlated equilibrium payoff and the best Nash equilibrium

11



payoff of the team, the value of correlation within a team. When the value of correlation within
a team is zero, then a team-maxmin equilibrium is guaranteed to be robust.

A Appendix: proofs omitted in the text

Proof of Lemma 2. Following von Stengel and Koller [14] we call T a team and j the adversary.
A profile s

∗
T ∈ ST is a team-maximin profile if s

∗
T ∈ arg maxsT∈ST

minsj∈Sj f(sT , sj). A profile
(s∗T , s

∗
j) is a team-maximin equilibrium if it is a Nash equilibrium such that s

∗
T is a team-maximin

profile. We write v
∗

:= maxsT∈ST
minsj∈Sj f(sT , sj).

The existence of a team-maximin profile is guaranteed by compactness and continuity as-
sumptions.

We shall prove the existence of a team-maximin equilibrium. Let s
∗
T be a team-maximin

profile. We want to find a best response of the adversary such that no team member i ∈ T

has an incentive to deviate from his team-maximin strategy s
∗
i when the other team members

play their team-maximin strategies s
∗
−i,j. For each i ∈ T and si ∈ Si, let Hi(si) := {sj ∈

Sj|f(si, s
∗
−i,j, sj) ≤ v

∗} be a set of strategies of the adversary such that given sj ∈ Hi(si), player
i’s payoff from si when others play team-maximin profile s

∗
−i,j is not higher than v

∗. For each
i ∈ T and si ∈ Si, it is clear that Hi(si) is nonempty, convex and compact (since f is continuous).
We construct a correspondence which fixed point is a desired best response of the adversary.

Define maps ψi : S ⇒ ST for each i ∈ T , ψj : S ⇒ Sj and ψ : S ⇒ S by

ψi(s) := arg max
si∈Si

f(s∗−i,j, sj) for each i ∈ T,

ψj(s) :=
�

i∈T

Hi(si),

ψ(s) :=
�

i∈N

ψi(s).

Suppose that (s̃T , s
∗
j) is a fixed point of ψ. We shall show that (s∗T , s

∗
j) is a Nash equilibrium.

First, we want to show that, for each i ∈ T, s
∗
i ∈ arg maxsi∈Si f(si, s

∗
−i,j, s

∗
j). Observe that

f(s̃i, s
∗
−i,j, s

∗
j) = f(s∗T , s

∗
j) = v

∗ for each i ∈ T . Indeed, if there exists i ∈ T such that s̃i �= s
∗
i

and f(s̃i, s
∗
−i,j, s

∗
j) < v

∗, then i ∈ T prefers s
∗
i to s̃i given s

∗
j and s

∗
−i,j, a contradiction. And, if

there exists i ∈ T such that s̃i �= s
∗
i and f(s̃i, s

∗
−i,j, s

∗
j) > v

∗ then s
∗
j /∈ Hi(s̃i), a contradiction.

Thus, for each i ∈ T we have s
∗
i ∈ arg maxsi∈Si f(si, s

∗
−i,j, s

∗
j). Next, since s

∗
T is a team-maximin

profile with value v
∗ and f(s∗T , s

∗
j) = v

∗ we have s
∗
j ∈ arg minsj∈Sj f(s∗T , sj). Hence, (s∗T , s

∗
j) is a

team-maximin equilibrium.
It remains to show that ψ has a fixed point. It is clear that ψ is upper hemicontinuous since

12



ψ is a product of upper hemicontinuous best reply correspondences and a correspondence ψj

which is an intersection of upper hemicontinuous correspondences Hi : Si ⇒ Sj. Moreover, it has
convex values as a product of convex valued correspondences. The set S is a nonempty compact
convex subset of a locally convex Hausdorff space. Then, if ψ has nonempty convex compact
values, it has a closed graph and thus ψ has a fixed point by Kakutani-Fan-Glicksberg Theorem.

So, to guarantee the existence of a fixed point of ψ it suffices to show that ψ has nonempty
values. For each i ∈ T the set ψi(s) is nonempty for all s ∈ S by Weierstrass’ Theorem. We
assert now that

�
i∈T Hi(si) �= ∅ for all sT ∈ ST . Suppose that there exists s̄T ∈ ST such that

�
i∈T Hi(s̄i) = ∅. For all sj ∈ Sj, define a vector f(sj) := (f(s̄i, s

∗
−i,j, sj))i∈T ∈ Rn−1 . Let

K := {f(s̄T , sj) ∈ Rn−1|sj ∈ Sj} and D := {y ∈ Rn−1|yi ≤ v
∗}. Note that K is convex and

compact subset of Rn−1 since Sj is compact and convex and f is linear in sj ∈ Sj. Obviously, D

is a convex and closed subset of Rn−1. Moreover, since there does not exist sj ∈ Hi(s̄i) for each
i ∈ T , we have K ∩D = ∅. By Separating Hyperplane Theorem there exists a linear functional
π := (πi)i∈T on Rn−1 strongly separating K and D, which clearly can be taken to satisfy

�
πi = 1

and πi ≥ 0. Define v̂ := miny∈K πy > v
∗.

For δ > 0, define s
δ
T := [(1− δπi)s∗i + δπis̄i] i∈T . We shall show that if δ > 0 is sufficiently

small, then v
∗

< f(sδ
T , sj) for all sj ∈ Sj. Let ŜT := {sT ∈ ST |there exist i, k ∈ T such that si �=

s
∗
i and sk �= s

∗
k}. By multi-linearity of f we can write

f(sδ
T , sj) =

�
�

i∈T

(1− δπi)

�
f(s∗T , sj) + δ

2
�

sT∈ŜT

λ(sT , δ)

δ2
f(sT , sj) + . . .

+
�

i∈T

�
δπi

�

k �=i

(1− δπk)

�
f(s̄i, s

∗
−i,j, sj)

=

�
�

i∈T

(1− δπi)

�
f(s∗T , sj) + δ

2
�

sT∈ŜT

q(sT , δ)

δ2
f(sT , sj) + . . .

+

�
�

i∈T

δπi

�

k �=i

(1− δπk)

�
�

i∈T

�
πi

�
k �=i(1− δπk)�

i∈T πi

�
k �=i(1− δπk)

�
f(s̄i, s

∗
−i,j, sj).

where q(·) is a coefficient.8 Observe that
�

πi
Q

k �=i(1−δπk)
P

i∈T πi
Q

k �=i(1−δπk)

�

i∈T
→ π as δ → 0. So, there exists

δ
�
> 0 such that, for all δ < δ

�,

�

i∈T

�
πi

�
k �=i(1− δπk)�

i∈T πi

�
k �=i(1− δπk)

�
f(s̄i, s

∗
−i,j, sj) ≥

v̂ − v
∗

2
.

8See Supplement for a detailed explanation.
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Thus for all δ < δ
� we obtain an inequality

f(sδ
T , sj) ≥v

∗
�

i∈T

(1− δπi) + v̌δ
2

�

sT∈ŜT

q(sT , δ)

δ2
+

�
v̂ − v

∗

2

�
δ

�

i∈T

�
πi

�

k �=i

(1− δπk)

�

for all sj ∈ Sj, where v̌ := mins∈S f(s) and so v̌ ≤ v
∗

<
v̂−v∗

2 . Since q(·) is a bounded function

of δ, it follows that δ
P

i∈T (πi
Q

k �=i(1−δπk))
δ2

P
sT∈ŜT

q(sT ,δ)

δ2

→∞ as δ → 0. Therefore, there exists δ̄ > 0 such that,

for all δ < min{δ̄, δ�}, we have f(sδ
T , sj) > v

∗ for all sj ∈ Sj, which contradicts to s
∗
T being a

team-maximin profile. Thus
�

i∈T Hi(si) �= ∅ for each sT ∈ ST .

Proof of Lemma 3. Fix a canonical ε-elaboration (u, P ) of g. Consider a complete information
game V := (N, (Σ̄i)i∈N , ((V )i∈T ,−V )). For each i ∈ N , the strategy set Σ̄i is a convex subset
of locally convex Hausdorff space and is compact in a product topology by Tyhonoff’s theorem.
The payoff function V is continuous and linear in a strategy of each player. By Lemma ?? there
exists σ

∗
T ∈ arg maxσT∈Σ̄T

minσj∈Σ̄j
V (σT , σj) and σ

∗
j ∈ Ξj such that (σ∗T , σ

∗
j ) is a Nash equilibrium

of V. We will show that σ
∗ is also a quasi-saddle point of (u, P ). It suffices to show that σ

∗ is a
Bayesian Nash equilibrium of (u, P ).

First, for each i ∈ N and all θi ∈ Θi \ Θ̄i, we have σ
∗
i (θi) ∈ arg max ui(σ∗−i, θi) by definition

of Σ̄i. Next, we need to show that, for each i ∈ N ,

�

θ−i∈Θ−i

P (θ−i|θi)
�

a∈A

σ
∗
i (ai|θi)σ

∗
−i(a−i|θ−i)ui(a, θ) ≥

�

θ−i∈Θ−i

P (θ−i|θi)
�

a∈A

σi(ai|θi)σ
∗
−i(a−i|θ−i)ui(a, θ), (2)

for all θi ∈ Θ̄i and σi(θi) ∈ ∆(Ai). Fix i ∈ T . We have V (σ∗i , σ
∗
−i) ≥ V (σi, σ

∗
−i) for all σi ∈ Σ̄i.

We can rewrite it as

�

θi∈Θ̄i

Pi(θi)
�

θ−i∈Θ−i

P (θ−i|θi)
�

a∈A

σ
∗
i (ai|θi)σ

∗
−i(a−i|θ−i)f(a) ≥

�

θi∈Θ̄i

Pi(θi)
�

θ−i∈Θ−i

P (θ−i|θi)
�

a∈A

σi(ai|θi)σ
∗
−i(a−i|θ−i)f(a)

for all σi ∈ Σ̄i. Inequality (2) follows for each i ∈ T since f is a saddle function of g. A symmetric
argument for j concludes the proof.
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B Appendix: generalized saddle functions

First we describe the domain of a saddle function. For each i ∈ N , let Ai ⊆ 2Ai\∅ be a covering
of Ai, i.e. Ai is a collection of nonempty subsets of Ai such that

�
Xi∈Ai

Xi = Ai.
Given a nonempty subset S ⊆ N and ΛS ∈ ∆(AS) we write

∆ΛS(AS) : = {λ ∈ ∆(AS)|λ(aS) =
�

XS∈A

ΛS(XS)λXS(aS) for each aS ∈ AS and

λ
XS ∈ ∆(AS) with

�

aS∈XS

λ
XS(aS) = 1 for each XS ∈ AS}

for the set of distributions over AS induced by ΛS.

Definition 3. Let j ∈ N and T := N\{j}. A function F : A → R is a generalized saddle

function (GS-function) of g if for each i ∈ T , all Qi ∈ ∆(A−i) and all qi ∈ ∆Qi(A−i),

Xi ∩ arg max
a�i∈Ai

�

a−i∈A−i

qi(a−i)gi(a
�
i, a−i) �= ∅

for every Xi ∈ arg max
X�

i∈Ai

�

X−i∈A−i

Qi(X−i)F (X �
i, X−i)

such that Xi is maximal in the argmax set ordered by the set inclusion relation; and for j and
all Qj ∈ ∆(AT ) and all qj ∈ ∆Qj(AT ),

Xj ∩ arg max
a�j∈Aj

�

aT∈AT

qj(aT )gj(a
�
j, aT ) �= ∅

for every Xj ∈ arg min
X�

j∈Aj

�

XT∈AT

Qj(XT )F (X �
j, XT )

such that Xj is maximal in the argmin set ordered by the set inclusion relation.
A generalized value of F is v

∗ := maxΛT∈∆(AT ) minΛj∈∆(Aj)

�
X∈A ΛT (XT )Λj(Xj)F (X). A

profile (Λ∗
i )i∈N ∈

�
i∈N ∆(Ai) is a generalized saddle point (GS-point) of F if

v
∗ =

�

X∈A

�
�

i∈N

Λ∗
i (Xi)

�
F (X),

Λ∗
j ∈ arg min

Λj∈∆(Aj)

�

X∈A

�
�

i∈T

Λ∗
i (Xi)

�
Λj(Xj)F (X),

Λ∗
i ∈ arg max

Λi∈∆(Ai)

�

X∈A

Λi(Xi)

�
�

i�=k

Λk(Xk)

�
F (X) for each i ∈ T.
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In what follows we fix a player j in N and a saddle function F . Therefore, abusing notation,
we omit reference to F when discussing GS-points, the value and other notions.

We restrict attention to a special class of GS-functions such that, for each i ∈ N , each element
Xi ∈ Ai is maximal in Ai ordered by the set inclusion relation, i.e., for each Xi ∈ Ai, we have
Xi � X

�
i for all X

�
i ∈ Ai with X

�
i �= Xi. Suppose g has such a GS-function F : A → R and

GS-point (Λ∗
i )i∈N . Consider a set of correlated equilibria

E : = {µ ∈ ∆(A)|µ is a correlated equilibrium of g and µ ∈ ∆Λ

for Λ ∈ ∆(A) such that
�

X∈A

Λ(X)F (X) = v
∗}.

We obtain the result analogous to Theorem 1.

Theorem 4. If g has a GS-function F : A → R such that for each Xi ∈ Ai, we have Xi � X
�
i

for each X
�
i ∈ Ai with X

�
i �= Xi and GS-point, then E is robust to canonical elaborations in g.

In the reminder of the section we prove Theorem 4. Let g be a game with GS-function F

and (u,P ) be a canonical ε-elaboration of g. For each i ∈ N , consider a collection of mappings

Ξi = {ξi : Θi → ∆(Ai)|for all θi ∈ Θi \ Θ̄i,

if ξi(Xi|θi) > 0, then Xi contains every undominated action of type θi}.

Define a function V : Ξ → R by

V (ξ) :=
�

θ∈Θ

�

X∈A

P (θ)ξ(X|θ)F (X).

A profile ξ ∈ Ξ is a generalized quasi-saddle point (GQS-point) of an ε-elaboration (u,P ) of g if

ξT ∈ arg max
ξ�
T
∈ΞT

min
ξ�j∈Ξj

V (ξ�T , ξ
�
j),

ξj ∈ arg min
ξ�j∈Ξj

V (ξT , ξ
�
j),

ξi ∈ arg max
ξ�i∈Ξi

V (ξ�i, ξ−i) for all i ∈ T .

Note that GS-point of g is GQS-point of a degenerate 0-elaboration of g where Θi is a singleton
for each i ∈ N . The proof of the existence of GQS-point is analogous to the proof of Lemma 22.

Lemma 4. Every canonical ε-elaboration of g has GQS-point.

For i ∈ N let Σi(ξi) :=
�

θi∈Θi
∆ξi(θi)(Ai) be a set of strategies in (u, P ) induced by ξi ∈ Ξi.

Let Σ(ξ) :=
�

i∈N Σi(ξi) for all ξ ∈ Ξ. Next we show that, for each GQS-point ξ
∗ ∈ Ξ there
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exists a Bayesian Nash equilibrium of an ε-elaboration (u, P ) in Σ(ξ∗). This result is analogous
to Lemma 6 in Morris and Ui [8].

Lemma 5. If ξ
∗ ∈ Ξ is a GQS-point of a canonical ε-elaboration of g, then there exists a

Bayesian Nash equilibrium in Σ(ξ∗).

Proof. Suppose that ξ
∗ ∈ Ξ is a GQS-point of a canonical ε-elaboration (u, P ) of g. For each i ∈

N , let a correspondence βi : Σ−i(ξ∗−i) ⇒ Σi(ξ∗i ) be such that βi(σ−i) = arg maxσi∈Σi
ui(σi, σ−i) ∩

Σi(ξ∗i ), for all σ−i ∈ Σ−i(ξ∗−i); and let β : Σ(ξ∗) ⇒ Σ(ξ∗) be such that β(σ) =
�

i∈N βi(σ−i) for all
σ ∈ Σ. Thus β is a best response correspondence restricted to Σ(ξ∗). We show that there exists
a fixed point σ

∗ ∈ Σ(ξ∗) of β, which must be a Bayesian Nash equilibrium of (u, P ). Notice that
for each i ∈ N a set Σi(ξ∗i ) ⊆ Σi is compact and convex. Moreover it is easy to show that β has
closed graph and convex values. Below we show that β has nonempty values.

Fix i ∈ T and σ−i ∈ Σ−i(ξ∗−i). First we show that, for each θi ∈ Θi and each Xi ∈ Ai such
that ξ

∗
i (Xi|θi) > 0 we have

Xi ∩ arg max
ai∈Ai

�

θ−i∈Θ−i

�

a−i∈A−i

P (θ−i|θi)σ−i(a−i|θ−i)ui(ai,a−i, θ) �= ∅. (3)

Suppose that θi ∈ Θi\Θ̄i. Then (1) holds since each Xi ∈ Ai such that ξ
∗
i (Xi|θi) > 0 contains

every undominated action of θi ∈ Θi \ Θ̄i.
Suppose that θi ∈ Θ̄. By definition of a GQS-point, we have

ξ
∗
i ∈ arg max

ξi∈Ξi

�

θ∈Θ

�

X∈A

P (θi, θ−i)ξi(Xi|θi)ξ
∗
−i(X−i|θ−i)F (X),

which implies that

ξ
∗
i (θi) ∈ arg max

ξi(θi)∈∆(Ai)

�

θ−i∈Θ−i

�

X∈A

P (θ−i|θi)ξi(Xi|θi)ξ
∗
−i(X−i|θ−i)F (X).

Therefore, for each Xi ∈ Ai such that ξ
∗
i (Xi|θi) > 0, we must have

Xi ∈ arg max
X�

i∈Ai

�

X−i∈A−i




�

θ−i∈Θ−i

P (θ−i|θi)ξ
∗
−i(X−i|θ−i)



 F (X �
i, X−i)

= arg max
X�

i∈Ai

�

X−i∈A−i

Q
θi
i (X−i)F (X �

i, X−i),

where Q
θi
i (X−i) :=

�
θ−i∈Θ−i

P (θ−i|θi)ξ∗−i(X−i|θ−i) for all X−i ∈ A−i.
By restriction on the domain A it follows that, for each Xi ∈ Ai with ξ

∗
i (Xi|θi) > 0, all
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θ−i ∈ Θ−i, and all q
θi
i ∈ ∆

Q
θi
i
(A−i), by definition of a GS-function,

Xi ∩ arg max
ai∈Ai

�

a−i∈A−i

q
θi
i (a−i)ui(ai,a−i, θ) = Xi ∩ arg max

ai∈Ai

�

a−i∈A−i

q
θi
i (a−i)gi(ai,a−i)

�= ∅

It remains to show that σ−i ∈ Σ−i(ξ∗−i) induces a distribution in the set ∆
Q

θi
i
(A−i), i.e. if

qi(a−i) =
�

θ−i
P (θ−i|θi)σ−i(a−i|θ−i) for all a−i ∈ A−i, then qi ∈ ∆

Q
θi
i
(A−i). To see this, consider

a distribution q
X−i

i ∈ ∆(A−i) such that

q
X−i

i (a−i) :=






P
θ−i

P (θ−i|θi)σ−i(a−i|θ−i)

Q
θi
i (X−i)

if Q
θi
i (X−i) �= 0,

1
|X−i| if Q

θi
i (X−i) = 0 and a−i ∈ X−i,

0 if Q
θi
i (X−i) = 0 and a−i /∈ X−i

for all a−i ∈ A−i. Now we can write

qi(a−i) =
�

X−i

Q
θi
i (X−i)q

X−i

i (a−i).

Thus, qi ∈ ∆
Q

θi
i
(A−i) by definition of ∆

Q
θi
i
(A−i). It follows that

Xi ∩ arg max
ai∈Ai

�

a−i∈A−i

qi(a−i)ui(ai,a−i, θ) �= ∅,

hence
Xi ∩ arg max

ai∈Ai

�

θ−i∈Θ−i

�

a−i∈A−i

P (θ−i|θi)σ−i(a−i|θ−i)ui(ai,a−i, θ) �= ∅.

Now we show that, for each i ∈ T , for all σ−i ∈ Σ−i(ξ∗−i), there exists a best response in the
set Σi(ξ∗i ). Since Σi(ξi) :=

�
θi∈Θi

∆ξi(θi)(Ai), for each θi ∈ Θi we have

∆ξ∗i (θi)(Ai) ∩ arg max
ai∈Ai

�

θ−i∈Θ−i

�

a−i∈A−i

P (θ−i|θi)σ−i(a−i|θ−i)ui(ai,a−i, θ) �= ∅.

Fix i ∈ T and σ−i ∈ Σ−i(ξ∗−i). For each θi ∈ Θi and Xi ∈ Ai such that ξ
∗
i (Xi|θi) > 0 consider

a nonempty set

X̄i := Xi ∩ arg max
ai∈Ai

�

θ−i∈Θ−i

�

a−i∈A−i

P (θ−i|θi)σ−i(a−i|θ−i)ui(ai,a−i, θ).
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And a set of distributions for each Xi ∈ Ai

M(Xi, θi) :=





{λXi

i ∈ ∆(Ai)|
�

ai∈X̄i
λ

Xi
i (ai) = 1} if ξ

∗
i (Xi|θi) �= 0,

{λXi
i ∈ ∆(Ai)|

�
ai∈Xi

λ
Xi
i (ai) = 1} if ξ

∗
i (Xi|θi) = 0.

The strategy profile σi such that for each θi and ai,

σi(ai|θi) :=
�

Xi

ξ
∗
i (Xi|θi)λ

Xi
i (ai|θi)

where λ
Xi
i (ai|θi) ∈ M(Xi, θi), belongs to Σi(ξ∗i ). It is also a best response to σ−i since each

ai ∈ Ai such that σi(ai|θi) > 0 belongs to some X̄i. Hence, for each i ∈ T we established that
βi has nonempty values. We can use a similar argument to show that βj has nonempty values.
Thus by Kakutani-Fan-Glicksberg fixed point theorem there exists a Bayesian Nash equilibrium
in Σ(ξ∗).

We need the characterization of ∆Λ(A) given in Lemma 3 in Morris and Ui [8].

Lemma 6. For all Λ ∈ ∆(A) we have λ ∈ ∆Λ(A) if and only if

�

a∈B

λ(a) ≥
�

X∈A
X⊆B

Λ(X)

for every B ∈ 2A
.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Suppose that (Λ∗
i )i∈N ∈

�
i∈N ∆(Ai) is a saddle point of g. Fix a canonical

ε-elaboration (u, P ) of g . By Lemma 4 there exists a GQS-point ξ ∈ Ξ of (u, P ). First, we shall
find a lower bound and an upper bounds on V (ξ). For each i ∈ T and each θi ∈ Θ̄i, let ξ

∗
T ∈ ΞT

be such that ξ
∗
i (Xi|θi) = Λ∗

i (Xi) for each Xi ∈ Ai. Since ξT ∈ arg max
ξ�T∈ΞT

minξ�j∈Ξj V (ξ�T , ξ
�
j),

we have V (ξT , ξj) ≥ minξ�j∈Ξj V (ξ∗T , ξ
�
j).

Let εT ≥ 0 be a marginal probability that one of the players in T is of committed type, i.e.,
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εT := P ((ΘT \ Θ̄T )×Θj). By definition of V for all ξ
�
j ∈ Ξj we have

V (ξ∗T , ξ
�
j) =

�

θ∈(ΘT \Θ̄T )×Θj

P (θ)
�

X∈A

ξ
∗
T (XT |θT )ξ�j(Xj|θj)F (X)

+
�

θ∈Θ̄T×Θj

P (θ)
�

X∈A

�
�

i∈T

Λ∗
i (Xi)

�
ξ
�
j(Xj|θj)F (X)

≥ εT Fmin +
�

θ∈Θ̄T×Θj

P (θ)
�

X∈A

�
�

i∈T

Λ∗
i (Xi)

�
ξ
�
j(Xj|θj)F (X),

where Fmin := minX∈A F (X). Observe that
�

X∈A
��

i∈T Λ∗
i (Xi)

�
Λj(Xj)F (X) ≥ v

∗ for all
Λj ∈ ∆(Aj), since (Λ∗

i )i∈N ∈
�

i∈N ∆(Ai) is a GS-point. It follows that

εT Fmin + (1− εT )v∗ ≤εT Fmin +
�

θ∈Θ̄T×Θj

P (θ)
�

X∈A

�
�

i∈T

Λ∗
i (Xi)

�
ξj(Xj|θj)F (X).

Therefore εT Fmin + (1− εT )v∗ ≤ V (ξ). By the symmetric argument for player j we get V (ξ) ≤
εjFmax + (1 − εj)v∗, where Fmax := maxX∈A F (X) and εj := P (ΘT × (Θj \ Θ̄j)). Combining
lower and upper bounds we obtain

εT (Fmin − v
∗) ≤ V (ξ)− v

∗ ≤ εj(Fmax − v
∗). (4)

To complete the proof we show that for each δ > 0, there exists ε̄ > 0 such that, for
all ε ≤ ε̄, each canonical ε-elaboration of g has a Bayesian Nash equilibrium σ ∈ Σ with
maxa∈A |µ(a)−

�
θ∈Θ P (θ)σ(a|θ)| ≤ δ for some µ ∈ E .

To get a contradiction suppose that for some δ > 0 there exists a sequence {(um
, P

m)} of
canonical ε-elaboration of g with ε

m → 0 such that maxa∈A |
�

θ∈Θ P
m(θ)σm(a|θ) − µ(a)| > δ

for all µ ∈ E , where σ
m ∈ Σ(ξm) is a Bayesian Nash equilibrium of (um

, P
m) and ξ ∈ Ξ is a

GQS-point of (um
, P

m). A Bayesian Nash equilibrium σ
m ∈ Σ(ξm) of (um

, P
m) exists by Lemma

5. By (4) and compactness of ∆(A) there exist a subsequence {ξk} in Ξ and Λ ∈ ∆(A) such
that

�
θ∈Θ P

k(θ)ξk(X|θ) → Λ(X) for each X ∈ A and
�

X∈A Λ(X)F (X) = v
∗. By Lemma 1

there exist a subsequence {σl} of {σk} and a correlated equilibrium ν ∈ ∆(A) of g such that
�

θ∈Θ P
l(θ)σl(a|θ) → ν(a) for all a ∈ A.

Now we demonstrate that ν ∈ ∆Λ. By Lemma 6 it’s enough to show that

�

a∈B

ν(a) ≥
�

X∈A
X⊆B

Λ(X)
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for each B ∈ 2A. But it follows immediately since, for each l = 1, 2, . . . and each B ∈ 2A,

�

a∈B

ν
l(a) ≥

�

X∈A
X⊆B

�

θ∈Θ

P
l(θ)ξl(X|θ).

Therefore ν ∈ ∆Λ and so ν ∈ E . The contradiction completes the proof.

C Supplement for the proof of Lemma 2

By linearity of f in si we can write

f(sδ
T , sj) = f((1− δπi)s

∗
i + δπis̄i, s

δ
−i,j, sj)

= (1− δπi)f(s∗i , s
δ
−i,j, sj) + δπif(s̄i, s

δ
−i,j, sj).

By linearity of f in sm we can further write

f(sδ
T , sj) = (1− δπi)f(s∗i , (1− δπm)s∗m + δπms̄m, s

δ
−i,j,m, sj) +

+δπif(s̄i, (1− δπm)s∗m + δπms̄m, s
δ
−i,j,m, sj)

= (1− δπi)(1− δπm)f(s∗i , s
∗
m, s

δ
−i,j,m, sj) + (1− δπi)δπmf(s∗i , s̄m, s

δ
−i,j,m, sj) +

+δπi(1− δπm)f(s̄∗i , s
∗
m, s

δ
−i,j,m, sj) + δ

2
πiπmf(s̄∗i , s̄m, s

δ
−i,j,m, sj).

We can proceed with expansion for all n− 1 members of T . Therefore we get 2n−1 terms in
total. For sT ∈ ST , let I(sT ) ⊆ T be the set of players who deviate from s

∗
T in a profile sT ∈ ST .

The coefficient of sT ∈ ST is given by

q(sT ) =
�

i∈I(sT )

δπi

�

i∈T\I(sT )

(1− δπi). (5)

In proof we defined a set of players where more than one player deviates by ŜT := {sT ∈
ST |∃i, k ∈ T such that si �= s

∗
i , sk �= s

∗
k}. From (B.1) it’s obvious that the coefficients are well

defined and are bounded functions of δ ∈ [0, 1].

D Appendix: examples of games with saddle functions

Example 3 (Exchange economies with quasi-linear utility functions). Consider an exchange
economy with quasi-linear utility functions. There are traders 1, ..., n and commodities 1, ..., L, L+

1. The consumption space of the first L commodities is RL
+ and that of the last commodity L+1,
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called the numeraire, is R. Each trader i has a strictly increasing utility function ui : RL
+×R → R

such that ui(xi, mi) = vi(xi)+mi, where xi ∈ RL
+ is i’s consumption vector of L commodities and

mi ∈ R is that of the composite commodity. Each trader i endowed with (e1
i , ..., e

L
i , m̄i), where

m̄i is assumed to be sufficiently large it is not binding. Assuming that the composite commodity
is the numeraire, the price vector of commodities in units of the composite commodity is denoted
by p ∈ RL. We write xi = (xl

i)
L
l=1 ∈ RL

+ and ei = (el
i)

L
l=1 ∈ RL, and x = (xi)n

i=1 ∈ (RL
+)n and

m = (mi)n
i=1 ∈ Rn.

The abstract economy a la Arrow and Debreu (1954) consists of the player set N = {0, 1, ..., n},
where player 0 is the auctioneer and player i = 1, ..., n is a trader; a set RL of auctioneer’s actions
and, for each trader i = 1, ..., n, a set RL

+ × R of i’s actions; a set Z0((x, m)) = RL
+ of auction-

eer’s feasible actions and, for each trader i = 1, ..., n, a set Zi((x−i, m−i), p) = {(xi, mi) ∈
RL

+ × R|p · xi + mi = p · ei + m̄i} of i’s feasible actions; and auctioneer’s payoff function
g0(x, m, p) =

�n
i=1 p · (xi−ei) +

�n
i=1(mi−m̄i) and i’s payoff function gi(x, m, p) = vi(xi) + mi

for i = 1, ..., n.9

The abstract economy degenerates to a complete information game consisting of the player
set N ; a set RL of auctioneer’s actions and, for trader i = 1, ..., n, a set RL

+ of i’s actions; and
the payoff functions

ĝ0(p, x) =
n�

i=1

p · (xi−ei)

ĝi(p, x) = vi(xi) + p · (ei−xi) + m̄i

for i = 1, ..., n. Define a function f : RL × (RL
+)n such that

f(p, x) =
n�

i=1

ĝi(p, x).

For the auctioneer, for each x ∈ (RL
+)n,

ĝ0(p, x)−ĝ0(p
�
, x) = −[f(p, x)−f(p�, x)]

for all p, p
� ∈ RL, and for each trader i = 1, ..., n, for each p ∈ RL and for each x−i ∈ (RL

+)n−1,

ĝi(p, xi, x−i)−ĝi(p, x
�
i, x−i) = f(p, xi, x−i)−f(p, x�i, x−i)

for all xi, x
�
i ∈ RL. Thus, we can show that the exchange economy with quasi-linear utility

9We assume the consumers’ budget constraints are not inequalities but equalities.
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functions has a saddle function f .

Example 4 (Congestion games with an attacker). Consider a congestion game with an attacker.10

There are a finite set E of facilities and n + 1 players. Each player i = 1, .., n, which we call a
commuter, chooses a subset ai of facilities, where ai ∈ Ai ⊆ 2E and Ai is a set of i’s actions.
We write T = {1, . . . , n}. Player 0, which we call an attacker, chooses one facility a0, where
a0 ∈ A0 = E and A0 is a set of 0’s actions. When m commuters uses a facility e and the attacker
chooses a0 ∈ A0, the cost ce(m, a0) for each user by using the facility is

ce(m, a0) =





de(m) if a0 �= e

t + de(m), if a0 = e

,

where de(m) is a facility cost for each user when the number of users of facility e is m, and t ∈ R
is the amount of money robbed by the attacker when a commuter meets the attacker. For each
action profile aT ∈ AT , let ne(aT ) be a number of users of facility e under a:

ne(aT ) = #{i ∈ T |e ∈ ai}.

Then, for each i ∈ T , i’s payoff function gi is the sum of the costs of facilities he selects times
minus one:

gi(aT , a0) = −
�

e∈ai

ce(ne(aT ), a0).

The attacker’s payoff is the sum of levies collected:

g0(a, a0) = na0(a)t.

Define a function f : AT × A0 → R such that

f(aT , a0) = −[
�

e∈∪n
i=1ai

ne(aT )�

m=1

de(m) + na0
(aT )t].

10A related class of games is the congestion games with “malicious” player studied by Babaioff et al. [1].
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Then, for each i ∈ T , for all ai, a
�
i ∈ A0, all a−i ∈ A−i,

f(ai, a−i)− f(a�i, a−i) = −[
�

e∈ai

ne(aT )�

m=1

de(m) + na0
(aT )t]

+[
�

e∈a�i

ne(a�i,aT\{i})�

m=1

de(m) + na0
(a�i, aT\{i})t]

= −[
�

e∈ai

ce(ne(aT ), a0)−
�

e∈a�i

ce(ne(a
�
i, aT\{i}), a0)]

= gi(ai, a−i)− gi(a
�
i, a−i).

We also have

f(aT , a0)− f(aT , a
�
0) = −[na0(aT )t− na�0

(aT )t]

= −[g0(aT , a0)− g0(aT , a
�
0)]

for all a0, a
�
0 ∈ A0 and aT ∈ AT . Thus, we can show that f is a saddle function of the game.
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