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Abstract 
 

In this paper, we develop new subgradient methods for solving nonsmooth convex optimization 
problems. These methods are the first ones, for which the whole sequence of test points is 
endowed with the worst-case performance guarantees. The new methods are derived from a 
relaxed estimating sequences condition, which allows reconstruction of the approximate primal-
dual optimal solutions. 

Our methods are applicable as efficient real-time stabilization tools for potential systems with 
infinite horizon. As an example, we consider a model of privacy-respecting taxation, where the 
center has no information on the utility functions of the agents. Nevertheless, we show that by a 
proper taxation policy, the agents can be forced to apply in average the socially optimal strategies. 

Preliminary numerical experiments confirm a high efficiency of the new methods. 
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1 Introduction

Motivation. Subgradient methods for minimizing nonsmooth convex functions have
already sufficiently long history of developments. First methods of this type were pro-
posed in the early 60s (see references and bibliographical comments in monographs of the
pioneers of this field, N. Shor [8] and B. Polyak [7]). For solving the problem

f∗ = min
x∈Q

f(x) (1.1)

with convex nondifferentiable objective function f , and closed convex feasible set Q ⊆ Rn,
dom f ⊆ Q, it was suggested to apply the simplest Subragient Method

xt+1 = πQ (xt − at∇f(xt)) , t ≥ 0, (1.2)

where πQ(x) is a Eucleaden projection of point x onto the set Q, ∇f(xk) is arbitrary
element from subdifferential ∂f(xk), and ak > 0 is a step size parameter. Euclidean
framework was essential for discovering this scheme. Indeed, in the contrast to the differ-
entiable functions, in nonsmooth case, an arbitrary subgradient cannot serve as a descent
direction for the current test point. Hence, the only reliable Lyapunov function for estab-
lishing convergence of the process (1.2) is the squared Euclidean distance from the current
test point to one of the optimal solutions x∗ to problem (1.1).

Having this picture in mind, it is easy to analyze the convergence of this scheme,
taking into account the following inequality:

1
At

t∑
k=0

akf(xk)− f∗ ≤ 1
At

[
1
2∥x0 − x∗∥22 + 1

2

t∑
k=0

a2k∥∇f(xk)∥22
]
, (1.3)

where At =
t∑

k=0

ak. In order to have the right-hand side of this inequality vanishing, it is

enough to ensure
lim
t→∞

at = 0, lim
t→∞

At = ∞. (1.4)

Note that the first of these conditions looks reasonable since for nonsmooth functuions
we cannot expect subgradients be vanishing in a neighborhood of the optimal solution.
Hence, this condition is absolutely necessary for convergence of the scheme (1.2).

From the complexity point of view, the best rule for the choice of step size parameters
is as follows

at = R
L
√
t+1

, t ≥ 0, (1.5)

where R is an upper bound for initial distance ∥x0 − x∗∥2, and L is an upper bound for
the norm of subgradients:

∥∇f(x)∥2 ≤ L, x ∈ Q. (1.6)

In this case, an ϵ-approximation of the optimal value f∗ of problem (1.1) can be found in

O
(
L2R2

ϵ2

)
(1.7)

iterations of method (1.2).

1



The next big step in the development of subgradient schemes was done in the famous
monograph by A. Nemirovski and D. Yudin [3]. It is related to clarification of several
important aspects. First of all, it was proven that for Euclidean setup, the complexity
estimate (1.7) is proportional to the uniform lower complexity bound of problem (1.1),
which is valid for all dimensions of the space of variables. In this sense, scheme (1.2) is
an optimal method for solving problem (1.1) in Euclidean setup.

At the same time, it was observed that the complexity bound (1.7) heavily depends on
the size parameter R. Its value is defined there with respect to Euclidean norm. However,
the size of the same set, measured in different norms, can be very different. How it is
possible to take properly into account geometry of a particular feasible set? For that, it
was suggested to use a special prox-function d(·), which must be strongly convex on the
feasible set Q:

d(y) ≥ d(x) + ⟨∇d(x), y − x⟩+ 1
2∥y − x∥2, x, y ∈ Q, (1.8)

and attain its minimum on Q at some point x0 with d(x0) = 0. In definition (1.8), we can
use already an arbitrary norm ∥·∥. In order to incorporate this function into minimization
process, in [3] there was developed a mirror descent scheme.

Note that method (1.2) is essentially primal. It generates points directly in the feasible
set Q, which is contained in the primal space of variables, say E. At the same time, any
subgradient, by its origin, defines a linear function on E. Hence, it belongs to the dual
space E∗. The updating rule in (1.2) is consistent only because we identify E with Rn,
and consequently E∗ = Rn.

Mirror descent method was the first dual method, which works directly in the dual
space. At each iteration, it updates a linear model of the objective function, and maps it
back into the primal space:

xt+1 = min
x∈Q

{
⟨

t∑
k=0

ak∇f(xk), x⟩+ d(x)

}
, t ≥ 0. (1.9)

The rate of convergence of this scheme can be obtained from inequality

1
At

t∑
k=0

akf(xk)− f∗ ≤ 1
At

[
d(x∗) + 1

2

t∑
k=0

a2k∥∇f(xk)∥2∗
]
, (1.10)

which coincides with (1.3) up to the definition of the distances:

∥s∥∗ = max
x∈E

{⟨s, x⟩ : ∥x∥ ≤ 1}, s ∈ E∗. (1.11)

Thus, the convergence of scheme (1.9) is guaranteed by the same conditions (1.4), and
the choice of parameters (1.5) results in the efficiency bound (1.7), where R2 ≥ d(x∗) and
L is computed by (1.6) with respect to the dual norm.1

1Several years ago, A. Beck and M. Teboulle [1] justified a primal subgradient method, which works with
Bregman distances: xt+1 = min

x∈Q
{at⟨∇f(xt), x⟩+D(xt, x)}, where D(x, y) = d(y)− d(x)− ⟨∇d(x), y − x⟩. The

rate of convergence of this method can be derived from the same inequality (1.10). In our terminology, this is
a pure primal scheme since it does not maintain a linear model of the objective function.
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Despite to its mathematical beauty, Mirror Descent Method (1.9) has hidden incon-

sistency. Indeed, new subgradients are included in the linear model
t∑

k=0

ak∇f(xk) with

vanishing weights (see (1.4)). This contradicts to one of the basic principles of the conver-
gent iterative schemes, which tells us that during the process the importance and quality
of new information should increase. This drawback was eliminated in the Dual Averaging
Methods [5]:

xt+1 = min
x∈Q

{
⟨

t∑
k=0

ak∇f(xk), x⟩+ γtd(x)

}
, t ≥ 0, (1.12)

which introduce in the process (1.9) a new control sequence of scaling coefficients {γt}t≥0.
This small modification resulted in the following estimate:

1
At

t∑
k=0

akf(xk)− f∗ ≤ 1
At

[
γtd(x

∗) +
t∑

k=0

a2k
2γk

∥∇f(xk)∥2∗
]
, (1.13)

It can be easily seen that now we have much more freedom in the choice of averaging
coefficients {at}t≥0. For example, we can choose at = 1 for all t ≥ 0. Then the choice
γt =

L
R

√
t+ 1 ensures for this method the optimal complexity bound (1.7).

Recently, it became clear that all methods mentioned above have a common drawback:

They cannot generate a convergent sequence of test points.

Indeed, for all methods we can guarantee only that lim
t→∞

1
At

t∑
k=0

akf(xk) = f∗. Clearly, this

fact allows uncontrollable jumps of the function values at some iterations. One of the
ways to escape from this difficulty is to consider the sequence of the record values

f∗t = min
0≤k≤t

f(xk).

However, this cannot be done in the situations, where we are not able to compute the
values of objective function (we give an example of such application in Section 3.3).
Another possibility is to define the sequence of points

x̄t = 1
At

t∑
k=0

akxk.

Then, in view of convexity, we have lim
t→∞

f(x̄t) = f∗. However, this suggestion is not

good for some applications, were we want to use a subgradient method as an adjustment
strategy for approaching a stable state of some system. In this case, the variable xt
has interpretation of the current state of control parameters, and the sugradient at xt
represents the observed reaction of the system. It is important to implement the variants
of control, which assymptotically stabilize the system. In such models, it is not very
useful to accumulate some knowledge about potentially good variants, which will be never
implemented in practice.

The main goal of this paper is the development of convergent subgradient methods.
For such methods, we are able to justify the rate of convergence for the whole sequence
of test points, which are the only points where we compute subgradients.
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Contents. We derive our methods from a relaxed version of the estimate sequence
condition (see Section 2.2.1 in [4]), where we allow more freedom in the right-hand side of
the recursively updated inequalities. This technique is presented in Section 2. Our first
method for solving the problem (1.1) is the subgradient method with double averaging. It
can be seen as an augmentation of method (1.12) by one additional averaging operation
in the primal space, which is performed at each iteration. As a result, we can prove
the rate of convergence for the whole sequence of test points. In the same section, we
present a variant with triple averaging, which has slightly better performance guarantees.
In both schemes we give convergence conditions for a wide range of control parameters,
and discuss the best strategies for their choice.

In Section 3 we discuss several applications, where it is possible to generate approxi-
mate primal-dual optimal solutions. We start from the convergence results for primal-dual
Fenchel problem. In Section 3.1, it is shown how to reconstruct primal and dual solu-
tion of minimax problem with known structure. In Section 3.2, we demonstrate that by
solving the Lagrangean dual of the primal problem with functional constraints we can
easily approach an optimal primal solution. Finally, in Section 3.3 we consider a model
of taxation of an industry, generating pollution. The utility functions of the producers
are not known to the center. However, it can detect the generated pollution, which cor-
responds to the current level of taxes. We show that even in this situation, the taxation
center can apply a real-time strategy, which converges in the limit to the optimal values
of taxes. Moreover, during the adjustment process, the producers will be willing to apply
in average the socially optimal production strategies.

In the last Section 4, we present the results of preliminary computational experiments.
They demonstrate that new methods outperform the standard minimization schemes on
certain problem instances.

Notation. We denote by E a finite dimensional linear vector space, and by E∗ its dual
space. For x ∈ E and s ∈ E∗ denote by ⟨s, x⟩ the value of the linear function s at x. For
function f , denote by f∗(·) its Fenchel conjugate:

f∗(s) = sup
x∈E

[⟨s, x⟩ − f(x)], s ∈ E∗. (1.14)

Since function f is closed, we have (e.g. [2])

f(x) = max
s∈E∗

[⟨s, x⟩ − f∗(s)], x ∈ dom f. (1.15)

Sometimes it is useful to define conjugate functions with respect to a set. Consider a
closed function f and a closed convex set C ⊆ E. Denote

f∗C(s) = sup
x∈C

[⟨s, x⟩ − f(x)], s ∈ E∗. (1.16)

If E = Rn, then E∗ = Rn and ⟨s, x⟩ =
n∑

i=1
x(i)s(i) for x, s ∈ Rn. In these spaces, we use

the standard notation for ℓp-norms with p ≥ 1:

∥x∥p =

[
n∑

i=1
|x(i)|p

]1/p
, x ∈ Rn.

Finally, 0n ∈ Rn denotes the vector of all zeros, and 1n ∈ Rn denotes the vector of all
ones.
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2 Methods with multiple averaging

In this section we consider the following minimization problem:

min
x∈Q

f(x), (2.1)

where Q is a closed convex set in finite-dimensional linear vector space E and f is a closed
convex function on E, such that Q ⊆ dom f ⊆ E. We assume that the set Q is simple (see
below).

For function f(·), we denote by ∇f(x) its arbitrary subgradient at x ∈ Q:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, y ∈ Q. (2.2)

Suppose that problem (2.1) is solvable and denote by x∗ its optimal solution, f∗
def
=

f(x∗). It is convenient to assume that intQ ̸= ∅ (otherwise we work with relative interior
of Q). For the set Q, we assume to be known a prox-function d(x), satisfying the following
assumption.

Assumption 1 • d(x) ≥ 0 for all x ∈ Q and d(x0) = 0 for certain x0 ∈ Q.

• d(x) is strongly convex on Q with convexity parameter one:

d(y) ≥ d(x) + ⟨∇d(x), y − x⟩+ 1
2∥y − x∥2, x, y ∈ Q. (2.3)

• Auxiliary minimization problem

min
x∈Q

[⟨s, x⟩+ γd(x)], s ∈ E∗, (2.4)

is easily solvable. Denote by xγ(s) its unique solution.

In this section we always assume that Assumption 1 is satisfied.
Thus, for any x ∈ Q we have

d(x) ≥ d(x0) + ⟨∇d(x0), x− x0⟩+ 1
2∥x− x0∥2 ≥ 1

2∥x− x0∥2. (2.5)

For proving the convergence of optimization methods as applied to problem (2.1), we
use a relaxed version of the estimate sequences technique (e.g. Section 2.2.1 in [4]). We are
going to generate a minimizing sequence {xt}t≥0 ⊂ Q, satisfying the following condition:

Atf(xt) ≤
t∑

k=0

ak[f(xk) + ⟨∇f(xk), x− xk⟩] + γtd(x) +Bt ∀x ∈ Q, (2.6)

where {ak}k≥0 and {γt}t≥0 are sequences of positive parameters, At =
t∑

k=0

ak, and all Bt

are nonnegative.

Denote ℓt(x) =
t∑

k=0

ak[f(xk) + ⟨∇f(xk), x− xk⟩], and ψ∗
t = min

x∈Q
[ℓt(x) + γtd(x)]. Thus,

condition (2.6) can be rewritten in the following form:

Atf(xt) ≤ ψ∗
t +Bt. (2.7)
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Let us derive some straightforward consequences of the above condition. Denote

st = 1
At

t∑
k=0

ak∇f(xk).

For arbitrary bounded closed convex set C ⊆ Q, denote

ξC(s) = max
x

{⟨s, x⟩ : x ∈ C}, s ∈ E∗. (2.8)

Lemma 1 Let the sequence of points {xt}t≥0 satisfy condition (2.6). Then for any t ≥ 0
we have:

f(xt) + f∗(st) + ξC(−st) ≤ 1
At
(Bt + γtDC), (2.9)

where DC = max
x

{d(x) : x ∈ C
∩
Q}.

Proof:
In view of condition (2.6), for any x ∈ Q and y ∈ E, we have

t∑
k=0

akf(xk) + γtd(x) +Bt ≥ Atf(xt) +At⟨st, y − x⟩+
t∑

k=0

ak⟨∇f(xk), xk − y⟩

(2.2)

≥ Atf(xt) +At⟨st, y − x⟩+
t∑

k=0

akf(xk)−Atf(y).

Thus, 1
At
(Bt + γtd(x)) ≥ f(xt) + [⟨st, y⟩ − f(y)] + ⟨−st, x⟩, and we get (2.9) in view of

definition of DC , (1.14), and (2.8). 2

For arbitrary R > 0, denote

∥s∥∗R = max
x∈Q

{⟨s, x∗ − x⟩ : ∥x− x∗∥ ≤ R}, s ∈ E∗. (2.10)

Note that ∥s∥∗R ≥ 0 for any s ∈ E∗. On the other hand, in view of the first-order optimality
condition for problem (2.1), there exists g∗ ∈ ∂f(x∗) such that ⟨g∗, x − x∗⟩ ≥ 0 for all
x ∈ Q. Therefore ∥g∗∥∗R = 0. Thus, the value ∥s∥∗R measures the quality of hyperplane
defined by s, playing the role of separator between the feasible set Q and the level set
{x ∈ E : f(x) ≤ f∗}.

Corollary 1 Let the sequence of points {xt}t≥0 satisfy condition (2.6). Then for any
t ≥ 0 we have:

f(xt)− f∗ + ∥st∥∗R ≤ 1
At
(Bt + γtGR), (2.11)

where GR = max
x∈Q

{d(x) : ∥x− x∗∥ ≤ R}.

Proof:
Let us choose C = {x ∈ Q : ∥x− x∗∥ ≤ R}. Then, in view of Lemma 1 we have

1
At
(Bt + γtGR) ≥ f(xt) + ⟨st, x∗⟩ − f∗ + ⟨−st, x⟩, x ∈ C

Maximizing the right-hand side of this inequality in x, we obtain (2.11) from (2.10). 2
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Note that GR > G0 = d(x∗).
It remains to find a recursive strategy for maintaining condition (2.6). Consider the

following process.

Subgradient Method with Double Averaging

1. Compute x+t = argmin
x∈Q

{At⟨st, x⟩+ γtd(x)}.

2. Define τt =
at+1

At+1
. Update xt+1 = (1− τt)xt + τtx

+
t .

(2.12)

Thus, x+t = argmin
x∈Q

[ℓt(x) + γtd(x)]. It is easy to see that

xt = 1
At

[
a0x0 +

t−1∑
k=0

ak+1x
+
k

]
, t ≥ 0. (2.13)

Note that for τt ≡ 1 method (2.12) coincides with the primal-dual averaging scheme (1.12).
If τt ≡ 1 and γt ≡ 1, then this is the mirror descent method (1.9). Additional averaging
parameters in (2.13) make the primal sequence more stable and lead to its convergence in
function value.

Theorem 1 Let the sequence {xt}t≥0 be generated by method (2.12) with monotone se-
quence of parameters {γt}t≥0:

γt+1 ≥ γt, t ≥ 0. (2.14)

Then condition (2.6) holds with

Bt = 1
2

t∑
k=0

a2k
γk−1

∥∇f(xk)∥2∗, (2.15)

where γ−1 = γ0. Moreover,

1
γt
At(f(xt)− f∗) +

1
2∥x

+
t − x∗∥2 ≤ d(x∗) +

1
γt
Bt. (2.16)

Finally, if x0 ∈ intQ, then xt ∈ intQ for all t ≥ 0.

Proof:
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Indeed, assume that condition (2.6) is valid for some t ≥ 0. Then

ψ∗
t+1 = min

x∈Q
{ℓt(x) + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩] + γt+1d(x)}

(2.14)

≥ min
x∈Q

{ℓt(x) + γtd(x) + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩]}

(2.3)

≥ min
x∈Q

{ψ∗
t +

1
2γt∥x− x+t ∥2 + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩]}

(2.6)

≥ min
x∈Q

{Atf(xt)−Bt +
1
2γt∥x− x+t ∥2 + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩]}

(2.2)

≥ min
x∈Q

{At[f(xt+1) + ⟨∇f(xt+1), xt − xt+1⟩]−Bt +
1
2γt∥x− x+t ∥2

+at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩]}.

Since (At + at+1)xt+1 = Atxt + at+1x
+
t , we obtain

ψ∗
t+1 ≥ At+1f(xt+1)−Bt +min

x∈Q
{1
2γt∥x− x+t ∥2 + at+1⟨∇f(xt+1), x− x+t ⟩}

≥ At+1f(xt+1)−Bt −
a2t+1

2γt
∥∇f(xt+1)∥2∗ = At+1f(xt+1)−Bt+1.

It remains to note that

ψ∗
0 = min

x∈Q

{
a0[f(x0) + ⟨∇f(x0), x− x0⟩] + 1

2γ0d(x)
} (2.5)

≥ A0f(x0)−
a20
γ−1

∥∇f(x0)∥2∗

(recall that we define γ−1 = γ0).
Let us prove now inequality (2.16). In view of Step 1 of method (2.12), we have

At⟨st, x∗⟩+ γtd(x∗)
(2.3)

≥ At⟨st, x+t ⟩+ γtd(x
+
t ) +

1
2γt∥x

+
t − x∗∥2

= ψ∗
t −

t∑
k=0

ak[f(xk)− ⟨∇f(xk), xk⟩] + 1
2γt∥x

+
t − x∗∥2

(2.7)

≥ Atf(xt)−Bt −Atf∗ +At⟨st, x∗⟩+ 1
2γt∥x

+
t − x∗∥2.

2

Corollary 2 For all t ≥ 0 we have

1
2∥xt − x∗∥2 ≤ d(x∗) +

1
γt
Bt. (2.17)
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Proof:
In view of (2.13), each point xt belongs to a convex hull of point x0 and points x+0 , . . . , x

+
t−1.

Hence, (2.17) follows from (2.16). 2

The most important version of method (2.12) corresponds to the choice at = 1, t ≥ 0.
In this case At = t+ 1, and method (2.12) becomes dependent only on the choice of the
parameters {γt}t≥0.

Subgradient Method with Double Simple Averaging

1. Compute x+t = argmin
x∈Q

{
⟨

t∑
k=0

∇f(xk), x⟩+ γtd(x)

}
.

2. Update xt+1 =
t+1
t+2xt +

1
t+2x

+
t .

(2.18)

For this method, we have st =
1

t+1

t∑
k=0

∇f(xk) and xt
(2.13)
= 1

t+1

(
x0 +

t−1∑
k=0

x+k

)
.

Theorem 2 Let sequence {xt}t≥0 be generated by method (2.18) with parameters {γt}t≥0

satisfying condition (2.14). Then, for any t ≥ 0, we have

f(xt)− f∗ + ∥st∥∗R ≤ 1
t+1

(
γtGR + 1

2

t∑
k=0

∥∇f(xk∥2∗
γk−1

)
. (2.19)

Moreover, if x0 ∈ intQ, then xt ∈ intQ for all t ≥ 0.

Proof:
Indeed, the estimate (2.19) can be obtained from Theorem 1, taking into account repre-
sentation (2.15) and the estimate (2.11). 2

From now on, we assume that sugradients of function f(·) are uniformly bounded on
intQ:

∥∇f(x)∥∗ ≤ L, x ∈ intQ. (2.20)

Corollary 3 Assume that in method (2.18) we have

γt → ∞, γt
t+1 → 0. (2.21)

Then lim
t→∞

f(xt) = f∗ and lim
t→∞

∥st∥∗R = 0.

Proof:
For any positive constant c, there exist a moment T such that γt ≥ c for all t ≥ T .
Therefore, the right-hand side of inequality (2.19) can be estimated from above as follows:

1
t+1

[
γtGR + L2

2

(
T−1∑
k=0

1
γk−1

+ t−T
c

)]
.
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In view of conditions (2.21), this bound goes to 1
c as t → ∞. Since c can be chosen

arbitrarily large, we prove the statement. 2

Let us present now the optimal strategy for choosing the values γt, t ≥ 0. Consider
the following sequence:

γt = γ
√
t+ 1, t ≥ 0, (2.22)

where γ is a positive parameter. Note that for a convex univariate function ξ(τ), τ ∈ R,
and integer bounds a, b, we have

1
2(f(a) + f(b)) +

b∫
a
ξ(τ)dτ ≤

b∑
k=a

ξ(k) ≤
b+1/2∫
a−1/2

ξ(τ)dτ. (2.23)

Therefore, for γt defined by (2.22), we have

t∑
k=0

1
γk−1

= 1
γ0

+
t−1∑
k=0

1
γk

(2.22)
= 1

γ + 1
γ

t−1∑
k=0

1√
k+1

(2.23)

≤ 1
γ + 2

γ

(√
t+ 1

2 −
√

1
2

)
≤ 2

γ

√
t+ 1.

(2.24)

Substituting this estimate in the right-hand side of inequality (2.19), we get the following
corollary.

Corollary 4 Let objective function of problem (2.1) satisfy condition (2.20), and the
sequence {γt}t≥0 be defined by the rule (2.22). Then, for any t ≥ 0, we have

f(xt)− f∗ + ∥st∥∗R ≤ 1√
t+1

(
γGR + 1

γL
2
)
,

1
γ

√
t+ 1 (f(xt)− f∗) +

1
2∥x

+
t − x∗∥2 ≤ d(x∗) +

1
γ2L

2.

(2.25)

For the optimal choice γ = LG
−1/2
R , we get the following rate:

f(xt)− f∗ + ∥st∥∗R ≤ 2LG
1/2
R · 1√

t+1
. (2.26)

To the best of our knowledge, method (2.18), (2.22) is the first subgradient scheme,
for which the rate of convergence is justified for the whole sequence of test points.

To conclude this section, let us present a slight modification of method (2.12), which
should exhibit a more stable behavior.

Subgradient Method with Triple Averaging

1. Compute x+t = argmin
x∈Q

{At⟨st, x⟩+ γtd(x)}.

2. Define x̂t =
γt

γt+1
x+t +

(
1− γt

γt+1

)
x0.

3. Define τt =
at+1

At+1
. Update xt+1 = (1− τt)xt + τtx̂t.

(2.27)
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Theorem 3 Let sequence {xt}t≥0 be generated by method (2.27), and parameters {γt}t≥0

satisfy condition (2.14). Then condition (2.6) holds with

Bt = 1
2

t∑
k=0

a2k
γk
∥∇f(xk)∥2∗. (2.28)

Moreover,
1
γt
At(f(xt)− f∗) +

1
2∥x

+
t − x∗∥2 ≤ d(x∗) +

1
γt
Bt. (2.29)

Finally, if x0 ∈ intQ, then xt ∈ intQ for all t ≥ 0.

Proof:
The proof of this theorem is very similar to the proof of Theorem 1. Therefore, in our
reasoning we skip some intermediate arguments.

Assume that condition (2.6) is valid for some t ≥ 0. Then

ψ∗
t+1 = min

x∈Q
{ℓt(x) + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩] + γt+1d(x)}

= min
x∈Q

{ℓt(x) + γtd(x) + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩] + (γt+1 − γt)d(x)}

(2.3)

≥ min
x∈Q

{ψ∗
t +

1
2γt∥x− x+t ∥2 + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩]

+1
2(γt+1 − γt)∥x− x0∥2}

≥ min
x∈Q

{ψ∗
t +

1
2γt+1∥x− x̂t∥2 + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩]}.

Now we can continue the proof in the same way as in Theorem 1, replacing γt by γt+1

and x+t by x̂t. Thus, we come to the bound

ψ∗
t+1 ≥ At+1f(xt+1)−Bt −

a2t+1

2γt+1
∥∇f(xt+1)∥2∗ = At+1f(xt+1)−Bt+1.

It remains to note that

ψ∗
0 = min

x∈Q

{
a0[f(x0) + ⟨∇f(x0), x− x0⟩] + 1

2γ0d(x)
} (2.5)

≥ A0f(x0)−
a20
γ0
∥∇f(x0)∥2∗.

2

Different variants of this scheme, including the choice of averaging coefficients at = 1
combined with the choice (2.22) of scaling coefficients, can be justified exactly in the
same way as the above mentioned variants of the scheme (2.12). With the optimal choice

of coefficients, their rate of convergence is of the order O

(
LG

1/2
R√
t+1

)
. However, note that

method (2.12) allows a significant flexibility in the choice of parameters. We can choose,
for example,

at = t, γt = t3/2, t ≥ 1.

In this case, At = O(t2), γt
At

= O(t−1/2), and 1
At

t∑
k=0

a2k
γk−1

= O(t−1/2). Thus, in view of

Theorem 1, this choice of coefficients also gives an optimal rate of convergence.

11



3 Primal-dual aggregating strategies

3.1 Optimization problem with known minimax structure

Consider minimization problem (2.1) with partially available structure of the objective
function. Namely, assume that it has the following representation:

f(x) = f̂(x) + max
u∈U

{⟨Au, x⟩ − ϕ̂(u)}, (3.1)

where f̂ is a closed convex function on Q, U is a closed convex set in E1, A is a linear
operator from E1 to E∗, and ϕ̂(·) is a closed convex function on U . Denote by u(x) one
of the optimal solutions of optimization problem in (3.1). Then, by Danskin’s theorem.

∇f(x) def
= ∇f̂(x) +Au(x) ∈ ∂f(x).

Let us write down the adjoint problem to (2.1):

f∗ = min
x∈Q

{
f̂(x) + max

u∈U
[⟨Au, x⟩ − ϕ̂(u)]

}

= max
u∈U

{
−ϕ̂(u) + min

x∈Q
[⟨Au, x⟩+ f̂(x)]

}
(1.16)
= −min

u∈U

{
ϕ̂(u) + f̂∗Q(−Au)

}
.

Thus, we come to the following primal-dual problem:

min
x∈Q,u∈U

{Φ(x, u) def
= f(x) + ϕ̂(u) + f̂∗Q(−Au)}. (3.2)

The optimal value of this problem is zero.
Let us show how the optimal solution of this problem can be approximated by method

(2.12). For simplicity, assume that set Q is bounded: d(x) ≤ D for all x ∈ Q. Denote
uk = u(xk). Note that

f(xk) + ⟨∇f(xk), x− xk⟩ = f̂(xk) + ⟨Auk, xk⟩ − ϕ̂(uk) + ⟨∇f̂(xk) +Auk, x− xk⟩

≤ f̂(x) + ⟨Auk, x⟩ − ϕ̂(uk).

Denote ūt =
1
At

t∑
k=0

akuk ∈ U . Using notation of Section 2, we have

ℓt(x) ≤ Atf̂(x) +At⟨Aūt, x⟩ −
t∑

k=0

akϕ̂(uk) ≤ At[f̂(x) + ⟨Atūt, x⟩ − ϕ̂(ūt)].

Therefore,
ψ∗
t = min

x∈Q
{ℓt(x) + γtd(x)} ≤ min

x∈Q
ℓt(x) + γtD

≤ Atmin
x∈Q

[f̂(x) + ⟨Aūt, x⟩ − ϕ̂(ūt)] + γtD

= −At[ϕ̂(ūt) + f̂∗Q(−Aūt)] + γtD.

12



Thus, in view of inequality (2.7), we get

Φ(xt, ūt) ≤ 1
At
[γtD +Bt].

It remains to use the estimates for the values At, γt, and Bt obtained in Section 2.
Note that it may be difficult to solve the primal-dual problem (3.2) directly, since the
computation of the values and subgradients of function f̂∗Q can be very difficult.

3.2 Dual Lagrangian methods

Consider the following minimization problem:

f∗
def
= min

x∈Q
{f0(x) : f(x) ≤ 0m}, (3.3)

where Q ⊂ E is a bounded closed convex set, function f0 is closed and convex on Q, and
the vector function f : Q → Rm consists of closed and convex components. Let us form
the dual Lagrangian problem to (3.3):

f∗ = min
x∈Q

max
λ≥0m

{f0(x) + ⟨λ, f(x)⟩} ≥ max
λ≥0m

min
x∈Q

{f0(x) + ⟨λ, f(x)⟩}

= max
λ≥0m

{
ϕ(λ)

def
= min

x∈Q
[f0(x) + ⟨λ, f(x)⟩]

}
def
= f∗.

Let us assume that the set Q and functions f0 and f are so simple, that the value of the
dual function ϕ is computable at any λ ≥ 0m. Then by Danskin theorem

∇ϕ(λ) = f(x(λ)), x(λ) ∈ Argmin
x∈Q

[f0(x) + ⟨λ, f(x)⟩]. (3.4)

Let us solve the dual problem
max
λ≥0m

ϕ(λ) (3.5)

by one of the schemes based on the relaxed estimate sequence condition (2.6). For that,
we need to define a prox-function of the feasible set. Let us choose

d(λ) = 1
2∥λ∥

2
2, λ0 = 0m.

We can derive now the consequences of condition

−Atϕ(λt) ≤ −
t∑

k=0

ak[ϕ(λt) + ⟨∇ϕ(λt), λ− λt⟩] + γtd(λ) +Bt, λ ≥ 0m (3.6)

(we take into account that (3.5) is a concave maximization problem). Note that

ϕ(λt) + ⟨∇ϕ(λt), λ− λt⟩ = f0(x(λt)) + ⟨λt, f(x(λt))⟩+ ⟨f(x(λt)), λ− λt⟩

= f0(x(λt)) + ⟨f(x(λt)), λ⟩.

13



Denoting now xt =
1
At

t∑
k=0

akx(λk)), we obtain

−Atϕ(λt)
(3.6)

≤ −
t∑

k=0

ak[f0(x(λt)) + ⟨f(x(λt)), λ⟩] + γtd(λ) +Bt

≤ −Atf0(xt)−At⟨λ, f(xt)⟩+ γtd(λ) +Bt.

Therefore,

f0(xt)− ϕ(λt) ≤ 1
At
Bt + min

λ≥0m

{
−⟨λ, f(xt)⟩+ 1

At
γtd(λ)

}
= 1

At
Bt − At

2γt
∥ (f(xt))+ ∥22.

Thus,
f0(xt) +

At
2γt

∥ (f(xt))+ ∥22 − ϕ(λt) ≤ 1
At
Bt, (3.7)

and for convergence of method (2.12) as applied to problem (3.5) we need to assume
boundedness of the gradient (3.4).

3.3 Privacy-respecting taxation

Consider the situation when a coordination center needs to bound some undesirable conse-
quences (e.g. pollution) of commercial activity of n producers. Every producer i decides
on his reasonable production volume ui, which can be chosen from a bounded closed
convex technological set Ui ⊂ Rmi

+ , i = 1, . . . , n. In the absence of tax regulation, each
producer justifies his choice by maximizing a concave utility function ϕi(ui), ui ∈ Ui.

If we bound the total pollution by certain acceptable level, a reasonable social target
consists in arranging the production activity in accordance to the optimal solution of the
following optimization problem

max
{ui}ni=1

{
n∑

i=1
ϕi(ui) :

n∑
i=1

Piui ≤ b, ui ∈ Ui, i = 1, . . . , n

}
. (3.8)

In this problem, b ∈ Rm
+ is the vector of upper limits on different kind of pollution, and

matrix Pi transforms the production activity of ith producer into the generated pollution.
It is natural to assume that 0 ∈ Ui, i = 1, . . . , n, and that b > 0.

Since all sets Ui are bounded, i = 1, . . . , n, the problem (3.8) is solvable. However,
it is not easy to implement its solution in practice. Indeed, the behavior of producers is
usually independent and selfish. They are not going to take into account the interests
of others. In order to tackle this difficulty, coordination center is going to charge the
generated pollution by some taxes p ∈ Rm

+ . In this case, the ith producer is forced to
make his choice by solving the problem

fi(p) = max
ui

[ϕi(ui)− ⟨p, Piui⟩ : ui ∈ Ui] , i = 1, . . . , n. (3.9)

Denote by ui(p) one of the optimal solutions to this problem. Then Piui(p) ∈ −∂fi(p).
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In this situation, the coordination center gets a possibility to reach a kind of social
balance. Indeed, let us assume that it chooses the taxes as the optimal solution to the
problem

min
p≥0

{
f(p)

def
= ⟨b, p⟩+

n∑
i=1

fi(p)

}
(3.10)

This problem is dual to the optimal distribution problem (3.8). The gradient of the
objective function in (3.10) is then

∇f(p) = b− v(p), v(p)
def
=

n∑
i=1

Piui(p). (3.11)

Note that −∇f(p) has interpretation of the excessive pollution of the system. The first
order optimality condition

⟨∇f(p∗), p− p∗⟩ ≥ 0, ∀p ∈ Rm
+ (3.12)

implies that for positive optimal taxes the excessive pollution is vanishing. If the optimal
tax is zero, then the excessive pollution is non-positive.

The main difficulty of coordination center with solving problem (3.10) is related to
the fact that usually the utility functions of the producers are not known. Instead, it is
possible to observe only the aggregated pollution v(p) generated by the whole industry.
Let us show how the problem (3.10) can be solved by the subgradient method with double
simple averaging.

Let us present interpretation of the objects generated by method (2.18) for problem
(3.10). We treat them as the processes in discrete time. In the primal space, the method
updates the taxes p[t], t ≥ 0, starting with the initial value p[0] = p0 = 0. In the dual
space, we update the average excessive pollution:

s[t] = 1
t+1

t∑
k=0

∇f(p[k]) (3.11)
= b− 1

t+1

t∑
k=0

v(p[k]).

In order to apply subgradient method (2.18), we need to choose a prox-function for
Rm
+ . Let us consider

d(p) = 1
2

m∑
j=1

1
κj
(p(j))2, (3.13)

where κj > 0 are some scaling coefficients. Define S[t] = −(t + 1)s[t] =
t∑

k=0

(v(p[k]) − b)

with S[−1] = 0. Then the adjustment process for the taxes looks as follows.
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Double Simple Averaging for Taxation (t ≥ 0)

1. Measure the total pollution volume v(p[k]).

2. Update the aggregate excessive pollution S[t] = S[t− 1] + v(p[k])− b.

3. Compute the tax predictions p
(j)
+ [t] =

κj

γt

(
S(j)[t]

)
+
, j = 1, . . . ,m.

4. Define new vector of taxes p[t+ 1] = t+1
t+2p[t] +

1
t+2p+[t].

(3.14)

Note that the only information reported to the tax office consists of the current pollution
level v[t] = v(p[t]). No private information (functions ϕi, sets Ui, production plans ui(p[t]))
is necessary for the efficient tax regulation.

Denote by ui[t] =
1

t+1

t∑
k=0

ui(p[k]), i = 1, . . . , n, the historical averages of production

plans of the producers, reacting on the dynamic tax policy (3.14). Let us show that they
approach the optimal solution of the socially balanced coordination problem (3.8).

First of all, let us find an interpretation for the linear function ℓt(p). Note that

f(p[k]) + ⟨∇f(p[k]), p− p[k]⟩ = ⟨b, p[k]⟩+
n∑

i=1
[ϕi(ui(p[k]))− ⟨p[k], Piui(pk)⟩]

+⟨b−
n∑

i=1
Piui(p[k]), p− p[k]⟩

=
n∑

i=1
ϕi(ui(p[k])) + ⟨b− v[k], p⟩.

Therefore,

ψ∗
t = min

p≥0
{ℓt(p) + γtd(p)}

= min
p≥0

{
t∑

k=0

[
n∑

i=1
ϕi(ui(p[k])) + ⟨b− v[k], p⟩

]
+ γtd(p)

}

≤ (t+ 1)
n∑

i=1
ϕi(ui[t]) + min

p≥0
{−⟨S[t], p⟩+ γtd(p)}

= (t+ 1)
n∑

i=1
ϕi(ui[t])− (t+1)2

γt

m∑
j=1

κj

2

(
v(j)[t]− b(j)

)2
+
.

Thus, in view of inequality (2.7), we have

f(p[t])−
n∑

i=1
ϕi(ui[t]) +

t+1
γt

m∑
j=1

κj

2

(
v(j)[t]− b(j)

)2
+

≤ 1
t+1Bt. (3.15)
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The left-hand side of this inequality is composed by the objective function of the dual
problem (3.10), computed at the last variant of taxes p[t], objective function of the primal
problem (3.8), computed at historical averages {ui[t]}ni=1, and the quadratic penalty for
violation the linear inequality constraints by the historical averages:

v[t]− b =
n∑

i=1
Piui[t]− b.

If we choose γt = O(
√
t), then the coefficient of the quadratic penalty t+1

γt
will go to

infinity, and the right-hand side of inequality (3.15) will go to zero. Therefore, we come
to the following conclusion.

Theorem 4 Let taxation algorithm (3.14) apply γt = O(
√
t). Then the taxes p[t] con-

verge to the optimal solution of problem (3.10). At the same time, historical averages of
individual production volumes ui[t], i = 1 . . . n, converge to the socially optimal solution
of problem (3.8).

Of course, this conclusion is valid under condition that all producers are able to mea-
sure undesirable effects Piui of their activity, and that they are honest in paying taxes.

4 Numerical experiments

Let us compare numerical performance of different subgradient schemes on one difficult
nonsmooth minimization problem. Denote

f(x) = max

{
|x(1)|, max

2≤i≤n
|x(i) − 2x(i−1)|

}
. (4.1)

This is a homogeneous convex function of degree one. Thus, f∗ = min
x∈Rn

f(x) = 0 and

x∗ = 0n. Consider the point x̄ ∈ Rn with coordinates

x̄(1) = 1, x̄(i+1) = 2x̄(i) + 1, i = 1, . . . , n− 1.

It is easy to see that x̄(i) = 2i+1 − 1, i = 1, . . . , n. Therefore

f(x̄) = f(1n) = 1.

Thus, the condition number of the level sets of this function with respect to infinity norm
κ∞(f) is very big:

κ∞(f) ≥ 2n+1 − 1. (4.2)

In other words, this function is highly degenerate even for a moderate dimension and we
can expect that it should be difficult for subgradient methods.

Let us choose x0 = 1n. Then R
def
= ∥x0 − x∗∥2 =

√
n and

∥∇f(x)∥∗ ≤ L
def
=

√
5, x ∈ Rn.

We assume that the exact values of R and L are available for numerical methods.
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In our experiments, we compare the simplest primal gradient method (1.2):

xt+1 = xt − R
L
√
t+1

∇f(xt), t ≥ 0,

the method of simple dual averaging (1.12):

xt+1 = arg min
x∈Rn

{
⟨

t∑
k=0

∇f(xk), x⟩+ L
√
t+1

2R ∥x− x0∥22
}
,

and the method of simple double averaging (SA2; see (2.18)) with γt = L
R

√
t+ 1 and

Euclidean prox-function d(x) = 1
2∥x− x0∥22.

Computational results of our experiments for dimension n = 10, . . . , 10240 are given
in the following table. All problems were solved up to accuracy ϵ = 2−6 = 0.0156 in the
function value (the optimal value of the objective was used in the stopping criterion).
First column of the table shows the dimension of the problem. Next three columns show
the number of iterations of PGM, SDA and SA2. Next column shows the percentage of
the number of iterations of SA2 with respect to theoretical prediction, which is shown in
the last column.

Dimension PGM SDA SA2 SA2(%) L2R2/ϵ2

10 51 204 9 254 586 0.29 204 800
20 102 405 65 536 1 587 0.39 409 600
40 204 805 131 072 4 094 0.50 819 200
80 409 616 262 144 6 655 0.41 1 638 400
160 819 209 524 288 16 484 0.50 3 276 800
320 1 638 409 1 048 576 35 184 0.54 6 553 600
640 3 276 807 2 097 152 73 390 0.56 13 107 200

1 280 6 553 612 4 194 304 143 475 0.55 26 214 400
2 560 13 107 205 8 388 608 309 681 0.59 52 428 800
5 120 26 214 405 16 777 216 579 893 0.55 104 857 600

10 240 52 428 810 33 554 432 1 181 849 0.56 209 715 200

Table 1. Computational results for function (4.1).

As we can see, our new scheme is a clear winner of this competition.
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