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1 Introduction

1 Introduction

Regime-switching nonlinear models with an observable switch or transition variable have
a rather long history. IQlLaDd:EI (|l95é, I_L%d) considered a model in which the coefficients

of a linear model change at a certain value of an observable stochastic variable. This

means that there is at some point an abrupt switch from one regression line to an-

other. IB_aﬁm_and_“LamJ (|19_U) generalized this feature such that instead of a switch,

the transition from one line to the other is smooth, hence the term “smooth transi-

tion”. The univariate dynamic counterparts of these models appeared in the time se-
ries analysis a few years later. ITmlg 1 IQZé) and |Tone: and Liml (|19&J) introduced the

threshold autoregressive (TAR) model, whereas ‘ ) were the first to

consider a smooth transition variant of it. ) constructed a systematic model
building strategy for threshold autoregressive models, for an alternative approach, see

(IZDDA) and hmmmmmﬁmmﬂgd (|2£)_1d Section

16.4). IZFEJASAHIIA (|l&%\| ) developed a similar strategy for smooth transition autoregres-

sive (STAR) models. The latter work was completed by IEJII_hﬁm_a.mj_T_Qta.ssﬂ.r_tA (|l9_9_d

who derived misspecification tests for STAR models. A coherent modelling strategy for

smooth transition regression (STR) models, including misspecification tests, appeared

in I_T_QLasﬂl_ml (|199§) For a recent review, see [Terasvi j ' : (lZQld,
Chapter 3). For a thorough treatment of univariate TAR models, see lﬂg ).

These models are single-equation models. The first nonlinear vector model with an ob-

servable switch variable was the vector threshold autoregressive (VTAR) model that
) introduced. The same threshold variable controlled the switch in each equation,

and the threshold parameter was also the same. IAl]d_ersml_andla.hd (|1Q9_§) discussed

testing the linear vector autoregressive (VAR) model against a vector smooth transition

model. ij ) introduced a smooth transition vector
error-correction model (STVECM) with a logistic transition function to investigate the
Granger-causality hypothesis between money, output, inflation and interest rates. In their
model, a single transition function controlled the transition in all equations.

) considered a bivariate logistic smooth transition model with exogenous regressors,
in which each equation could have its own the transition variable. He devised a modelling
strategy, consisting of specification, estimation and evaluation stages, for building such

models. Recently, LAJ.LQr_b_a.ch_ami_Gmgd.nmb_enlﬁJ (|2ﬂlj) estimated a three-dimensional

two-regime vector STAR model to investigate the impact of fiscal policy on output. These

authors, however, fixed the parameters of the transition function in advance, making their

model (the conditional mean) completely linear for the estimation purposes. For a recent
survey of vector TAR and STAR models, see IHl].bUQh_and_Te.taﬁariJ (|2D_lj)

In this paper, the previous work is generalized in various ways. Our model can have



2 The statistical framework

more than one transition. Exogenous variables are allowed as in Ig_am.a&hA (|2£m_4|) Sea-
sonality is introduced using seasonal dummies or trigonometric functions. The LVSTAR
system can either have the same transition function for all equations or the transition
variable may vary from one equation to the next. In the latter case, linear equations are
allowed as well.

Following hﬂﬁﬂlﬁﬁ dlM) and IQam.a_QbA (IZDDAI), a complete modelling strategy is

constructed for building LVSTAR models. Linearity and misspecification tests when a

single transition variable is controlling the transition in the whole system need special

consideration and are discussed in ASVi | ). In addition to the mis-
specification tests for the conditional mean, testing constancy of the error covariance
matrix is considered as well. Nonlinear least squares estimation and the problem of find-
ing initial values are discussed in detail. Dynamic properties of estimated models are

investigated using generalized impulse response functions, see Ilﬁ&p,_&&a&an_aﬂd_&)_ﬁﬂl

. How the modelling strategy works is illustrated by applications to the relationship

betwee i asoline 3prlce and consumption in the US and to the daily flow of two Icelandic

rivers. fitted a bivariate VTAR model with exogenous variables, temperature
and precipitation, to the latter pair of time series, and we want to compare our results
with his.

The plan of the paper is as follows. The LVSTAR model is introduced in Section
and the modelling procedure in Section [l The specification of the model is the topic of
Section 4l Parameter estimation by nonlinear least squares is considered in Section Bl and
model evaluation by misspecification tests in Section[6.1l Section [7] contains two empirical

applications. Final remarks can be found in Section [8

2 The statistical framework
The linear vector autoregressive model with & lags (VAR(k)) is defined as follows:

yi = Alyia+ALyi o+ ..+ ALy + P'di+ e
= FIXt + Ey¢, (21)

where F = (A}, ..., A}, @), is a (kp+q¢) xp matrix, x, = (y}_q, .-, ¥i_s, d}) is a (kp+q) x 1
vector, y; is a px 1 column vector, and each A;, i = 1, ..., k, is a px p matrix. Furthermore,
d; is a ¢ x 1 vector consisting of deterministic components such as intercepts, trends and
seasonal dummies, and exogenous variables. Finally, ® is a ¢ X p matrix containing the
coefficients of the elements of d;. The p x 1 error vector &; is white noise with mean zero

and positive definite covariance matrix €2.
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Throughout the paper, matrices will be denoted by boldface capital letters, and vectors

by lowercase boldface ones.

2.1 The vector logistic STAR model

We generalize (2]]) into the logistic vector smooth transition autoregressive (LVSTAR)

model. This model has the following representation:

yi =Fx; + e = {Z(Gifl —- G)F}x; + ¢, (2:2)

i=1
where the p x 1 error vector is white noise with mean zero and positive definite covariance
matrix Q, F; = (A, ..., AL, ®)), i =1,...m, is a (kp + ¢) X p matrix, and G} is a

diagonal matrix of transition functions:

G; = diag { g(su|vi1, 1)y -r 9(SpitVips Cip) }, (2.3)

fori =1,...,m—1, and GY = I,, G* = 0. The diagonal elements of G} in (Z3) are

logistic functions of their transition variables:
9(sijelvigs i) = (1 +exp{—ij (5550 — i) }) ™5 755 > 0, (2.4)

fori=1,..,m—1and j = 1,...,p. Some rows of F,, i = 2,...,m, may be zero vectors,
in which case the corresponding equations are linear. In order to avoid identification
problems, the diagonal elements of the corresponding diagonal matrices Gi, i = 2,...,m,
are assumed to equal one, say. This is also the case for subsets of F;, that is, not all
equations need to have the same number of transitions.

The function ([24) is a continuous (for 7;; < o0o), monotonically increasing sigmoid
function of its argument s;;; and bounded between zero and one. We assume that the
transition variable s;;; is a weakly stationary random variable, but it can also be a time
trend: s;; = t/T, where T is the number of observations; see for example

). Furthermore, 7;; is the slope or smoothness parameter, determining the shape
of the function, or the smoothness of the transition. The parameter ¢;; is a location
parameter determining the midpoint of the transition. When ~;; = 0, the corresponding
equation becomes linear, and when 7;; — 00, the transition in that equation becomes
abrupt. In that case, when also s1; = ... = sy, ¢j1 = ... = ¢j, and m = 2, the resulting
model is the multivariate TAR model of If[lsa.;z l9_9é)

As an example, consider the case where m = 2. Then (2Z.2)) becomes
ye = {(I, — G)F} + G Fo}x; + e (2.5)

so there is a single transition in each equation of the model. In this case, each location

parameter c;;, j = 1, ..., p, has a straightforward interpretation. It represents the inflection

3



2 The statistical framework

point in which the transition function has value 1/2, i.e., one is halfway through the
transition from F} to FY in the sense that in (2.3) the changing parameter matrix F, =
1/2)(F} + F%). When p = 1, (Z3)) is the univariate logistic STAR model ofm
o

This type of regime-switching can be convenient for modelling, for example, structural

shifts when the transition variable is the normalized time ¢/7T", or business cycle asymme-

try where the regimes represent expansions and recessions, see
(@) and i Asvi ) for empirical examples.

The LVSTAR model defined in (2.2)) has p different transition functions for each i =
1,...,m—1, and each one can have its own transition variable. If v, = 72, = ... = Vi = Vi,
Cli = Coi = ... = Cp; = C;, and Sy14 = Sgi¢ = ... = Spix = Si, then the it" transition matrix
is G = g(sit|7i, ¢;)I,. This may in some applications be a reasonable simplification and
reduces the complexity of the model.

Restrictions are required to make the model defined by 2.2), (23) and (2.4]) iden-
tified. In each equation, the likelihood function is invariant to permutations of the or-

der of transitions. This is similar to the so-called label switching problem in mixture

models, for discussion see IBﬁdnﬁLamMaike_Ll (|l9&4|), IﬂfiuﬂLand_Bﬂ_bﬂﬂ (|l99_4}|) and
IBj&b.ald.SD_tLalldilriQtJ (|199_ﬂ) To identify the model, one may assume that the tran-

sitions appear in the order their transition variables appear in vector x;. If two transition

functions of the i*" equation have the same transition variable, Sijt = Sikt, J 7 k, identifi-
cation is achieved by assuming c;; < ¢;,. This generalises to situation in which more than
two transition functions have the same transition variable.

The LVSTAR model can be reparameterised as follows:
Yt = (B/l + G%Bé 4+ ...+ G’:nilBgn)Xt + Er = \Il;B/Xt + Ey¢, (26)

where ¥, = (Ip, G}, ..., G;"il), is a mp x p full rank time-varying matrix. Furthermore,
B = (By,B,,....B,,) is a (kp + q) X mp matrix, where By = F;, and B; = F;, — F;_q,
i = 2,...,m. The representation (Z.2]) describes the transition through different extreme
regimes F;, © = 1,...,m, whereas the reparametrised form (2.6)) is practical for specifica-
tion, estimation and evaluation, and hence will be employed hereafter. The special case

[23) where m = 2 has the reparameterised form

yi = (B + G{BY)x; + &;.

If.la.m.a&hd (|2DD_4I) considered this representation for modelling bivariate time series.
Moreover, the number of transitions in every equation is not necessarily restricted to

be the same. Suppose that equation j has m; extreme regimes. Let m = max(my,...,m,)

and formulate the models ([Z2) and (Z8). In Z2), restrict all the j columns in F; to

4



2 The statistical framework

be the same, for all i > m;. Equivalently, in ([Z0), restrict all the j columns in B; to
be zeros, for all ¢ > m;. In the following subsection, we will discuss the details of how to
make such restrictions in the following section.

We make the following assumption:
Assumption 2.1. The sequence of y; in (Z2), t = 1,...,T is weakly stationary.

Assumption 2.J] is a high-level assumption. Stationarity of vector nonlinear models is

discussed in [Sai ). Stationarity conditions in his work are valid only for
LVSTAR models with a single transition function for all equations. Corresponding results

do not seem to exist for the case where each equation has its own transition function.

2.2 Restrictions on linear parameters

In this section we consider possible restrictions on the column space of the linear parameter
B, for example, multiple switches between the two extreme regimes, and linearity of
certain equations of the system. In some applications it is appropriate to specify the
transition function such that the extreme regimes associated with small and large absolute
values of s; — ¢ are identical. This can be achieved within a single-transition model by

using the exponential function

g(Sjt\’VjaCj) =1- eXp{—’Vj <5jt - Cj)z}, v >0,

for applications see IMmba_QLeIﬁJ_J d].%_ﬂ), lS_aJ;aJlIJ.A (|J_&9_d), and IRE'&‘J_GE_&LI (lZDLUJ), or by

the second-order logistic function

9(sjelvss ¢5) = (L4 exp{—; (sjr — ;) (sj0 — )}, 75 >0,

where ¢;, < ¢;, as proposed in Llalls_en_ami_'l“ﬂa‘sm (|l99_é) More generally, multiple

switches between the two extreme regimes can be described by the general nth-order

logistic transition function.
In the framework of the LVSTAR model, assuming multiple switches between the two
extreme regimes can also be achieved by imposing restrictions on the parameter matrix

B. As an example, consider the 2-transition multivariate model
Yt = (Bll —+ thBIQ + G?Bg)xt + Er = \IIQBIXt + €.

The assumption of multiple switches between two extreme regimes implies By + B3 = 0.

This is a more flexible alternative than the previous ones because v;; # 7,2 is allowed.
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3 Modelling strategy

Modelling stationary vector time series with LVSTAR models is carried out in a sys-
tematic fashion. The modelling strategy may be divided into three stages: specifica-

tion, estimation, and evaluation. Corresponding procedures for single-equation models

exist and have been successfully applied; see for example i ) for
ARIMA models, I@ (@) andhsnésﬂﬁ@ﬂjﬂﬂhﬂu@nﬂﬂm@ (lZQld, Section 16.4)

for threshold autoregressive and switching regression models, and ASVi ) or

|Teréisvirta Tigstheim and Grangerl , Section 16.3) for smooth transition regression
models. IQam.a&bd (|20£l4|) designed a modelling strategy for bivariate STAR models, and

we generalise it to our family of LVSTAR models. We also consider the special case in

which all equations are assumed to have the same transition variable. ) makes
this assumption for his two-regime vector threshold autoregressive (VTAR) model. In that
model, the whole transition function, i.e., both the threshold variable and thereshold, is
the same for all equations of the model.

Estimating a linear stationary VAR model is the first stage in specifying an LVSTAR
model. This involves selecting the lag length for the VAR model. Specification consists of
testing the linear VAR model against LVSTAR one and, if linearity is rejected, determining
the structure of the LVSTAR model. This implies selecting the transition variable(s)
and determining the lag structure of the model. The latter means reducing the size of
the model by imposing appropriate parameter restrictions. The way linearity is tested
depends on the assumptions made about the system. If it is assumed that the LVSTAR
model only has a single transition variable, that is, it is the same for all equations, a joint

test involving the whole model can be applied. If this assumption is not madeé testini

and transition variable selection may be carried out equation by equation as in
M), seeh.dmkmgu_e&_aﬂ (IL%A) andhﬂé‘smmﬁ (Ili%l, Ll99§).

Reducing the size of the model already involves parameter estimation. The parameters

of the LVSTAR model are estimated using nonlinear least squares. Numerical aspects of
this estimation problem will be considered later. In the linear VAR case, necessary and
sufficient conditions for the least squares estimators to be consistent and asymptotically
normal exist, but this is not the case for nonlinear LVSTAR model. Stability of the model
is a necessary condition, but explicit conditions for stability of the general LVSTAR model
do not seem to exist.

Evaluation of the model is done by checking (a necessary condition for) stability nu-
merically and subjecting the estimated model to misspecification tests. These include
testing the null hypothesis of no error autocorrelation, the null of no additive nonlinear-
ity, and testing parameter constancy. Constancy of the covariance matrix is tested as

well. We now consider these three stages of model building and begin with specification.
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4 Specification of the Logistic Vector STAR model

As already mentioned, specification involves testing linearity against the LVSTAR model
and selecting the transition functions. Linearity testing requires a test of m = 1 against
m = 2, where m is the number of ’extreme states’ and m — 1 the number of transitions
in the system. Before the estimation, we need to determine m. If m = 1 is rejected

against m = 2, the next step is to test m = 2 against m = 3. The relevant test is

discussed in ASVi | ). There is a statistical argument in favour of
building the model from specific to general’: if m is chosen too large, the model will
contain unidentified nuisance parameters. This invalidates the asymptotic inference as
the parameters of the model cannot be consistently estimated. This is a well known
problem, first formulated and discussed byID_aAd_Qéj (|l9_7j |J_9_&ﬂ), see also |Watson and Englej

), and, later, in the univariate STAR context, byls_ajk]ﬁmﬁu_and_lek]ﬁm&d M),
) and |:|1@;a‘mrm| (IJ_M) A solution based on constructing the
empirical null distribution of the test statistic can be found in M ), see also

IT(jLaﬁsarLa.jLa.LI (|2ﬂld, Chapter 5) for discussion.

The choice of the transition variables for the LVSTAR model can in some cases be

based on economic theory implications. More often, however, economic theory may sug-
gest many potential transition variables. For example, the theory may not be explicit
about which lag of a given variable to choose. In the univariate case, a common way is
to conduct a linearity test for each potential transition variable and choose the one which
produces the strongest rejection measured in the p-value.

In the multivariate case we can conduct linearity tests equation by equation as in

ILJ.]J.lk]m_U.Qu_eLa.LI (|l9ﬁ§), If]lﬁta.m.ria| (|lﬂ9_4|) and IQa.ma.QhA (|2DD_4I) For each equation, one

may choose the transition variable that produces the smallest p-value in the test as in

the univariate case. If linearity is not rejected for any transition variable in the set, the
corresponding equation is assumed to be linear. However, in the multivariate case, if
there are several very significant transition variable candidates for some equations, the
question is which combination of transition variables to choose for the LVSTAR model.
A joint test of linearity against a LVSTAR model in which different equations would have
different (predetermined) transition variables would be useful.

To illustrate, consider the p-dimensional single-transition logistic VSTAR model in
29):

Yt = B/lxt + GtBIQXt + &y, (41)

where the sequence {g;} is iidN(0,€2). The null hypothesis of linearity can be written
as Ho: 75 = 0, 7 = 1,...,p, and the alternative hypothesis is H;: at least one v; > 0,

j = 1,...,p. The basic idea of the joint test is to replace the transition function by a
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first-order Taylor expansion. For details, see Iflle_taﬁﬂm_a.ﬂdlang (|2D_14|)

If it is assumed a priori that potential nonlinearity in the vector system is controlled

by a single transition variable, this has to be taken into account in testing linearity.
Economic theories or in some cases common sense may suggest this special case. A good
example is the investigation of the evolution of different prices of an asset in different
markets controlled by the difference between the prices, see ). In that paper,
the price difference is the sole transition variable. A joint linearity test against LVSTAR
with a single transition variable is therefore advisable, as it makes it possible to control
the (asymptotic) size of the test for the whole system. The joint test with a single
transition variable is a special case of the joint test with different transition variables, see

Our suggestion for specifying a LVSTAR model with a single transition variable is

to conduct the joint linearity tests with each potential transition variable. If none of
these tests rejects linearity, one can retain the linear VAR model. If the null hypothesis
is rejected for at least one transition variable, we choose the one producing the smallest
p-value in the test. Furthermore, we test each equation separately using the selected

transition variable in order to find out whether some equations are in fact linear.

5 Estimation of parameters

In this section we consider nonlinear least squares (NLS) estimation of the parameters
in the LVSTAR model (Z:6]). We focus on traditional derivative-based optimization tech-
niques. The model has the parameters § = {B,Q,I', C}, where B = (B, Bs, ..., B,,),
I' ={v;} and C = {¢;;},i=1,...m—1, j =1,..,p. The NLS estimators are obtained

by solving the following minimization problem:
6= argm@inQT(G), (5.1)

where Qr(0) = Y1, (y: — ¥\B'x,) (y; — ¥/ B'x,).

In practice, the objective function Q7(#) can be rather flat in many directions and
meanwhile possess many local optima. Finding a suitable starting-value of 6 for the
nonlinear optimization algorithm is therefore essential. We employ a grid search algorithm
for finding the starting-value. The set of the parameters 6 is divided into two subsets:
the 'nonlinear parameter set’ {I', C} and the linear set containing the parameters in B.
The basic idea of the grid search is to construct a discrete grid in the parameter space of
I’ and C. For each point in the grid, that is, a fixed pair of I' and C, one estimates the
parameters in B. For fixed I and C, B is estimated by linear regression. Such a regression

is carried out for all values in the grid. The pair of I' and C yielding the smallest sum of
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squared residuals and the corresponding estimate of B are selected as the starting-value
for the ensuing nonlinear optimization.

Because of the possibility of local optima the grid should be sufficiently dense. It
could be necessary to allow it to be more dense in some areas than in others. A dense
grid requires a large number of points. But then, the number should not be too large
because the computational burden increases with the number of grid points. Finding a
proper balance between these conflicting requirements may not always be easy.

Since the error covariance matrix 2 does not enter the objective function Qr, it is
convenient to find the initial estimates of the parameters equation by equation. For
equation j, let the corresponding parameters be I';, C; and 3;, and the corresponding

residual sum of squares ;7. The grid search is carried out as follows:

1. Construct a discrete grid in the parameter space of I'; and C;.

2. For each pair of I'; and C; in the grid, compute the corresponding Bj and the

residual sum of squares @, r.

3. Find the smallest Q); 7 and choose the corresponding ﬁj and the pair of I'; and C;

as suitable starting values.

In constructing the grid, one has to choose combinations of I'; and C; such that the
corresponding transition functions display a sufficient amount of variation in the grid. For
example, if the location parameter ¢ in a logistic function is chosen outside the observed
support of the transition variable, the corresponding slope parameter v has to be small
enough to compensate for that.

If there is a single transition function for the whole system, the initial estimates are
worked out as follows. For fixed I and C, the conditional minimizer of ()7 can be obtained

by solving the first-order condition equations

T

> % (yi — ¥B'x,) ¥, = 0
t=1
that can be rewritten as
T T
Z xy U} = Z xx,BU, ;. (5.2)
=1 t=1

The equation (5.2)) leads to the following closed form of the NLS estimator of B conditional
onI' and C:

-1

Tt Z vec (Xtyé\Il;)] : (5.3)

t=1
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Expressed otherwise,
vee(B) = (M'M) ™" M'vec(Y") (5.4)
where M = (Y1, Yy,...,Yr) is a Tp x mp(kp + ¢) matrix and ¥, = ¥, ® x; is an
mp(kp+¢q) X p matrix. The T X p residual matrix E= (é1,...,€r)" where &, =y, — \I/;B/Xt
is a column vector of residuals. The estimated error covariance matrix equals
Q=T"'FE.

It is seen from (B5.4) that 7" > m(kp+ q) is a necessary condition for M'M to have full
rank and, consequently, to ensure that the solution (54 is unique.

The grid may be replaced by a heuristic estimation algorithm such as simulated anneal-
ing or differential evaluation. Simulations by (m) show that these algorithms
compare well with grid searches and may in many cases lead directly to the global opti-
mum.

After selecting the starting-values, the parameters can be estimated using NLS. In
order to alleviate the computational burden, it is advisable to follow the suggestion of
Sollis et al. (|L9_9d) made for estimating univariate STAR models. The first iteration con-

sists of re-estimating the parameters in I'; and Cj, given the starting values for 3;. This

is done by NLS. Following this, the new value of 3;, call it Bf), is calculated as in Step
2 of the above algorithm. In the next iteration B;Q) is fixed in re-estimating the parame-
ters in I'; and C;. Iteration is continued until convergence. Dividing each iteration into
these two steps reduces the dimension of the nonlinear estimation problem and thus saves
computation time. If the grid has been dense, the initial step-length of the nonlinear
optimization algorithm must be sufficiently short so that optimization with a high prob-
ability leads to the local minimum closest to the value found by the grid search. If the
LVSTAR model has same transition function for all equations, the same approach can be
used. The difference is that the linear step now consists of estimating a linear VAR model
instead of a single equation.

The dimension of the grid can be further reduced for models with more than one
transition by keeping the nonlinear parameters from the previously estimated model fixed
and restricting the grid search to the new transition. This alleviates the computational

burden.

6 Evaluation

6.1 Misspecification tests

Finding out whether the estimated LVSTAR model appears to satisfy the assumptions

under which it was estimated is an integral part of model building. We employ the three

10
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multivariate misspecification tests constructed in IIGLaﬁAﬂLta_alld_Ya.ﬂg (|2D_14|) They are

the test of no serial correlation test, the test of no additive nonlinearity, and the parameter

constancy test. All of them are the extensions of the three univariate misspecification tests

developed in IE.IIJ_b_e.Im_ami_Te_taﬁﬂrLJ (|l99£4) The multivariate serial correlation test is
derived from the autocorrelation VARMA form, see IGQd.[rﬁ;zl M, pp. 117-118). The

multivariate additive nonlinearity test is the just the joint linearity test for the case m > 2.

The multivariate parameter constancy test is a special case of the joint linearity test in

which the transition variable is the normalized time 7 = ¢/T.

ILiiIJ&epQ_h.d (|2£m_4|) draws attention to the possibility that the error covariance matrix
of a vector model may in practice be nonconstant. Testing the constancy of this matrix

is therefore an important part of model evaluation. In this work, we use both the test

developed in IEk]_und_ami_T_Qta.ssﬂ.r_tA dZDDj) and the one by IXa.—ng ({EAI) These are tests

against multivariate heteroskedasticity but based on different assumptions. The one in

IEkhmdled_Tﬂm‘ﬂlrLA dZDQA) is derived presuming that the correlations of the errors are

time-invariant, whereas the test developed by | (@) is based on the assumption

that the rotating projection of the covariance matrix is time-invariant. The simulation
results in asvi (|2DD_'Z|) suggest that the size of the test is only slightly

affected by violations of the assumption of constant correlations. The same is true for the

assumption of constant rotation projection in | ).

6.2 Stability of the system

In this paper, the LVSTAR process is assumed weakly stationary. A necessary condition
for this is stability. In the linear VAR case, the necessary and sufficient conditions for
exponential stability and weak stationarity coincide. There are no necessary and sufficient
conditions for weak stationarity of the vector LSTAR models (such conditions are lacking
for the general univariate STAR model as well).

A naive approach to checking weak stationarity consists of checking the roots of the lag
polynomials of the extreme regimes and seeing whether or not they lie outside the complex
unit disk. However, this would only provide a sufficient condition for weak stationarity.
Besides, in practice this is only possible for single-transition models whose equations share
the same transition function.

Exponential stability may be studied numerically by generating paths of realisations
from the LVSTAR model by switching off the noise, starting from a large number of initial
points and seeing whether or not the paths of realisations converge. Convergence to a
single stationary point is a necessary condition for exponential stability. Since the method
is numerical, the conclusion following from repeated convergence to the same point can

only be that the stability assumption is not contradicted by these calculations. If it is, the
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model may be respecified and re-estimated or abandoned. This diagnostic is employed in
the examples of Section[[ The "histories’, i.e., sets of values of the time series in question

are natural starting-values for stability calculations.

6.3 Heteroskedasticity-robust tests

Heteroskedasticity is a common feature in both financial and macroeconomic time series
of sufficiently high frequency. It has an adverse effect on the empirical size of linearity
and misspecification tests. From the results of the tests of the empirical applications in
the following section, it can be seen that the tests are much more likely to reject the null
of linearity when the covariance matrix is not constant over time. In such circumstances,
it is important to have asymptotically valid tests that are reliable in finite samples.

A straightforward way of deriving Lagrange multiplier type tests that are asymp-
totically heteroskedasticity-robust is to use heteroskedasticity-consistent covariance ma-
trix estimates (HCCME) suggested in w (@) Nevertheless, the findings in the

Monte Carlo experiments in ) indicated that in small sam-
ples, asymptotic critical values are not useful when heteroskedasticity-robust versions of
the standard Lagrange multiplier tests are applied. The wild bootstrap turned out to be
superior to the tests based on the HCCME in their simulations.

7 Empirical applications

7.1 Gasoline price and consumption

We consider two applications of the LVSTAR model and begin by looking at the interac-
tion between the US real gasoline prices and gasoline consumption. The time series are
the monthly real gasoline prices and the monthly real gasoline consumption from February
1973 to December 1998. A rather common, albeit not unanimous, view in the literature is
that the effects of energy price shocks on some macroeconomic aggregates are asymmetric.
In particular, energy price increases are perceived to have larger effects than energy price
decreases. We want to find out whether this is also the case for the relationship between
the gasoline price and the gasoline consumption.

This pair of time series has been analysed in [Kilian and Vigfusson (2011), KV for

short. The original series are transformed into logarithms and differenced, so the two

variables to be modelled are approximate monthly growth rates. Figure [ shows the
levels of both series. Let y; = (y14+,y2+) where y; 4 is the real gasoline price change and
Y2+ the real gasoline consumption change. In order to model the presumed asymmetry,

KV censored the price variable in the consumption equation such that it obtained value
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zero for negative values of the series, that is, ¥, ;, = max(0, v, 4), given a suitable lag

d. They estimated the following multivariate VAR (k) model:
k k

Y = a0+ Z a11,Y1,t—i + Z 12,iY2,t—i T €1t
i=1 i=1

k k k
Yot = G20+ Z a21,iY1,t—i T Z 22,;Y2,t—i + Z le,@-yft_i + €2, (7.1)
i=0 i=1 i=0

where E(g;;) = 0, E(¢%) = 02, i = 1,2, and E(ey,69;) = 0. The last assumption is needed
for identification. The triangular form (7.I]) implies weak exogeneity of the price variable,
which is not an unreasonable assumption. The focus of KV was on testing the hypothesis
for,=0,7=0,...k in (TI). They were interested in possible asymmetry in the effect
of a price change on consumption but found no compelling evidence against symmetry.
We begin by fitting a linear VAR model to the series and testing linearity of the
two equations against the LVSTAR model. In doing so, we treat lags of both variables
as potential transition variables, as we do not know in advance which variable controls

potential nonlinearity. It appears that k& = 2 is a sufficient lag length because the relevant

LM test, see ASVi | ), does not reject the null hypothesis of no serial

correlation. However, the multivariate Lomnicki-Jarque-Bera test in I_Ld.]_tm_pghj M)
strongly rejects the null hypothesis of multivariate normality, and constancy of the error

covariance matrix is rejected by the tests of IEkhmdﬁndLEQL&SAaIL_al (lZDDj) and lljn.g

). These rejections may indicate misspecification of the conditional mean, or the

presence of outliers in the linear model, or both.
Linearity of the VAR model is tested equation by equation. For both equations, we
test using y; -4, j = 1,2, d = 1, ..., 6, as transition variables. Table Il contains the results.

The j—values (multiplied by 100) of Wilks’s A test, Rao’s F test, see Iflle_taﬁﬂr_ta_andlang

), and the wild bootstrap LM test are reported. In this application, the first two

produce almost identical results, whereas the results of the wild bootstrap tests deviate
from them. Linearity is strongly rejected for many transition variables in the first two
tests, whereas the same happens in a much smaller number of wild bootstrap tests. The
presence of heteroskedasticity is a likely explanation to this difference in performance.
We choose the transition variable according to the p-values of the third-order wild
bootstrap tests. This means choosing y;, 4 for the price equation and y;, 1 for the
consumption equation. After estimating the two-regime LVSTAR model, the test of no
additive nonlinearity indicates that the price equation may have another transition with
Y145 as the transition variable. But then, one transition seems to be sufficient for the
consumption equation. The final LVSTAR model thus consists of a two-transition price

equation with transition variables y;, 4 and y;, 5, and a single-transition consumption
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equation with transition variable y;, ;. Removing the variables corresponding to in-
significant parameter estimates and imposing some restrictions based on the discussion in
Section 2.2 we end up with the following estimated LVSTAR model:

e = 0200 b = Q288 s + 130 e+ O
Q08 e 3 v + Q2 s~ 02 1)

(oo {5t (- g10) /o})
(0489 3na-1 + QB3 vt — Q48 e+ G105 vasc2 — 0400)
(1 ort-og g (s +000) /) +ou
e = O~ L8 s + G138 wracs = Q24D theca + 48
(O30 sna-1-+ Q720 vt = Q20 e + 7 wasca = 030S)
(1 ow {24 (ner + 132) for}) 4 (72
T =311, tr{Qy.} = 6.77, 0, = 2.43,

where the figures below the parameter estimates are standard deviation estimates, and oy
is the sample standard deviation of y; ;. The model ([Z.2) is evaluated by misspecification
tests mentioned in Section [6.1], and the results can be seen in Table Pl The model passes
almost all the wild bootstrap tests at significance level 0.05. The p-value 0.04 for y; ;4
in the consumption is not small enough to make us reject the null hypothesis of no addi-
tive nonlinearity, given the number of observations and the number of tests we conduct.
Results of the joint wild bootstrap serial error correlation and parameter constancy tests
look fine enough. The results of the tests of constancy of the error covariance matrix (not
reported) indicate that there is unmodelled conditional heteroskedasticity in the errors.
They explain why the results of the wild bootstrap based tests differ from those tests
assuming independent identically distributed errors.

Figure 2 depicts the estimated transition functions for the gasoline price change equa-
tion and the consumption change equation. The transition in the consumption equation
is smoother than the two transitions in the price equation. As a whole, the observations
cover the whole range of values of the transition functions from zero to one. Figure
shows the values of the transition functions over time for both equations.

Figure [ sums up the results of checking the stability of our estimated model, as
discussed in Section [6.21 We use all histories in the data set as the initial values, and the
paths are shown in Figure[dl The realised price observation sequences converge to —0.302
and the consumption ones to 0.218. No matter which initial values or histories are used,

the trajectories converge to the same stationary point.
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As is the case in autoregressive models in general, it is not possible to interpret single
coefficients of the model. In order to shed light on the question of possible asymmetry
of the gasoline prices and consumption to shocks, we compute generalized multivariate
impulse functions as suggested in Ilﬁmpji_al.l (|l99£4) and represent them using highest
density regions (HDR) of (|19_9_d), see also [Terésvirta et aIJ , Section 15.3).

The HDRs, which in this example are unimodal, are illustrated using boxplots. Responses
to positive shocks are shown separately from responses to negative ones.

The lower panel of Figure Bl shows that the response of consumption change to price
change shocks is asymmetric. A negative price shock causes a stronger response than
a positive one in the sense that the density has greater dispersion in the former case
than in the latter. This difference lasts two months before disappearing. Negative price
shocks thus cause greater uncertainty in the consumer behaviour than positive ones. The
directions are as expected: a negative price shock on the average increases consumption
growth, whereas a positive shock decreases it. The response of price to price shocks
appears in the upper panel of Figure The two consumption shocks in Figure [@], are
symmetric around zero, as the responses to positive and negative shocks are mirror images
of each other. Note, however, that given weak exogeneity of the price variable, interpreting

these responses is problematic.

7.2 Icelandic river flows

We turn to two daily Icelandic river flow series from the years 1972-1974, in which the
flow is measured in cubic metres per second. The series are from the Hydrological Survey
of the National Energy Authority of Iceland and were first analyzed using univariate

nonlinear models by tmn&ﬂ@mmmmm@ dl%j). IIS_agZI (IlEL%J) considered

the two rivers, Jokulsa eystra and Vatndalsa, jointly and fitted a bivariate threshold

autoregressive model with a single threshold to the series.

ITQU.g_eLalJ (|l9§d) describe the rivers and the observation station. Jokulsa is the bigger
river of the two, with a large drainage basin that includes a glacier. Vatndalsa has a much

smaller drainage area, and some of the flow is due to groundwater. The weather station
lies between the two drainage basins at about 650 metres. The temperatures measured
there are higher than the ones on the glacier of Jokulsa, which affects the results of

modelling. I:Bmg_e;c_al,l (|19§d) point out that measuring the rainfall accurately is difficult
because of high winds in the area. This may also explain some of the empirical results.

Before modelling, the precipitation series is shifted forward by one day due to the

way the rainfall is recorded, see ITQU.nglJ dlM) The flow, precipitation and the

temperature are graphed in Figure [l The flow is strongest in the spring when the snow

is melting and slows down in the summer. The spring peak is more pronounced in the
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Vatndalsa flow than the Jokulsé one, because the drainage area of the latter contains the
glacier, which smooths the flow.

We denote the Jokulsa flow by yy;, the Vatndalsa one by ys;, precipitation by x; and
temperature by z;. We complement our model by a seasonal component that contains an

annual half-cycle (a sine function) and an annual cycle. It has the form
1 sin(nm/365) + 0y sin(2n7/365) + 05 cos(2nm/365), (7.3)

where n represents the n'* day of the year.

We begin by testing linearity. The column 'Lin to R2’" in Table [Bl reports the results
from the wild bootstrap third-order linearity tests. The null hypothesis of linearity is
rejected very strongly for both flows and all transition variables; some of the p-values lie
below 107191 The test results are thus inconclusive, and following (@ we select
the temperature as the transition variable for both flow equations. Since the flows are
heavily autocorrelated, choosing a lag of the flow would have been another possibility.
The results of the wild bootstrap test of no additive nonlinearity for the estimated the
two-regime (single-transition) LVSTAR model can be found in column 'R2 to R3’ of
Table Bl They show that the nonlinearity attributed to the temperature has been well
described, but there are still many strong rejections of the null hypothesis. The model is
thus extended to a three-regime one. Somewhat subjectively, we select the precipitation
of lag one x; ; as the new transition variable for both equations. Column 'R3 to R4’
in Table [ contains the results of the tests of no additive nonlinearity. There are still
a number of rejections, especially in the Vatndalsa equation. Since we do not want to
complicate the model further, however, we terminate the search for transitions.

After removing redundant variables and lags and imposing some other parameter
restrictions, the estimated model has the form (7.4)—(7.0]).

Before interpreting the results, we evaluate the model. The wild bootstrap tests of no
error autocorrelation up to lag 10 can be found in Tabled], and they do not indicate prob-
lems. The tests of parameter constancy do not reject the null hypothesis either. These

results do not challenge the specified model. Both the results from the error covariance

matrix constancy tests in ASVi dZM) and Ijian.g (lZD_lAI) reject strongly,
which indicates the presence of heteroskedasticity. This explains the difference between
the results of wild bootstrap based tests and the ones assuming i.i.d. errors. A look at Pan-

els (a) and (b) in Figure [7 suggests that there will still be heteroskedasticity in the errors

of the estimated LVSTAR model. Indeed, both the test of IEkhmd_andLEQL&SAarLﬁl (|2£Hlﬂ)

*The numbers stored in a computer system are not continuous. There exists a positive number € such

that 1 +¢€ # 1, and for any x < €, 1 + 2 = 1. This € is the smallest positive floating-point number. In R,
€ = 2.220446¢ — 16.
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and the one by @ M) strongly reject when parameter constancy (homoskedasticity)
is tested against heteroskedastic errors.

Next we provide some comments on the estimated model. To begin with, the transition
in the Jokulsa equation driven by the temperature, shown in Figure[ is very smooth. The
regime change begins at temperatures around 0°C and is completed when the temperature
approaches 10°C. This is due to the glacier. When the temperature increases, so does
the flow from the glacier. However, since the glacier is located at 1000 — 1800 metres,
considerably higher than the weather station, the flow increases gradually as a function of
the temperature. Vatndalsa without a glacier, has a much more rapid transition driven by
the temperature, and the estimate of the location parameter equals 0.3°C, see Figure

Figures [I0 and 1] show the transitions driven by the precipitation in the two rivers.
Since we are using the same observations for both rivers and the mid-point of transition
in Jokulsa is much higher than the one in Vatndalsa it seems that the flow of the small
river is affected more rapidly by the rain than that of the big one, which is be reasonable.
The transition of the small river driven by the precipitation has a low mid-point at 1.41,

suggesting that the response to even small amounts of rain is nonlinear.
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It is seen from the estimates of the coefficients of the lagged flow that the flow does
increase with the temperature as is expected. A seemingly mysterious detail is that there
are cross-effects, although there is no linkage between the rivers. (@) also found
these cross-effects in his Vector TAR model. We shall return to this point in the discussion
of generalised impulse responses.

The temperature itself does enter the Jokulsa flow equation, but the coefficients are
hard to interpret. This may be due to the fact that there is only one weather station, and
its readings may therefore not be useful other than in the transition function. The same
is true for Vatndalsa.

As in the preceding example, in order to illustrate the dynamic behaviour of the es-
timated model we estimate generalised impulse response functions. For the transition
variable of the temperature, we define two separate sets of histories: one when the tem-
perature z; > 0.3 at the moment of shock, and the other when z; < 0.3. This value equals
the estimate of the location parameter in the transition function of the Vatndalsa equa-
tion. It also represents the point in which melting of snow has begun (the flow has begun
to increase) in parts of the Jokulsa drainage basin. The shocks are divided to positive and
negative ones. This gives eight different types of shocks according to the flow shocked,
the temperature, and the sign of the shock. As in the previous application, the impulse
response functions are described using HDRs and boxplots. The results are in Figures
-13

The effects of shocks generally last longer in the 'summer’, z; > 0.3, than in the
'winter’, z; < 0.3. Although the mode of the HDR converges to zero quite quickly in the
summer, the densities shrink towards a point much more slowly than in the winter. Most
of the responses are close to being symmetric: the most pronounced asymmetry can be
found in the flow of Vatndalsa in the summer, see Figure A negative shock to that
flow causes a much stronger response than a positive one. The most puzzling finding is
the strong response of the Jokulsa flow to shocks to the Vatndalsa equation in the summer
in Figure 4l It is also asymmetric and even stronger than the response of the flow of
this river to own shocks. The HDRs of the latter can be found in Figure [2 But then,
as Figure [I3] shows, the flow of Vatndalsa is not much affected by shocks to the flow of
Jokulsa.

Since the rivers are not connected, the effects of shocks to the Vatndalsa flow to the
flow of Jokulsa have no physical explanation. It seems plausible to think, however, that
change in the flow of the former is a leading indicator that precedes a corresponding change
in the flow of the latter. Since Vatndalsa has a smaller drainage area that is located at a
lower altitude than that of Jokulsd and has no glacier, changes in precipitation and how

snow is melting there signal corresponding changes in the flow of the larger river. In the
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summer when the snow has melted in the Vatndalsa drainage base and the flow slowed
down, one would also expect a reduced flow in this river. Interestingly, the response
begins with a one-day lag, which may be due to the inertia caused by the glacier. That
the opposite cross-effect is very small may be explained by the size difference of these
rivers. Shocking a big flow (Jokulsd when the snow is melting, say) does not have a
similar dynamic indicator effect on the flow of the smaller river. Finally, these responses
are almost negligible when the temperatures are below freezing.

For the transition variable of the precipitation, we also define two separate sets of
histories: one when the precipitation x;_; > 5 at the moment of shock, and the other
when x;_; < 1.4. The remaining histories are discarded. For space reasons, some of the
HDRs are not shown, but they are available at

http://creates.au.dk/research/research-papers/supplementary-downloads/.

8 Concluding remarks

We generalise previous versions of vector LSTAR or LSTR models to the case in which
the model can have a different transition variable or variables for each equation and the
model can at the same time contain more than one transition. This is the case in our first
application. In the second one, the transition variables are the same, but the transition
functions are not restricted to be identical. In this application, relaxing the restriction of
identical transitions turns out to be important. We devise a modelling strategy for this
class of nonlinear models, consisting of specification, including testing linearity, estimation
and evaluation stages. Parameter estimation is carried out by nonlinear least squares
and a major tool at the evaluation stage is a set of misspecification tests as in Iﬁ@?&a‘

(Il%)_d), IZEQL&MILﬁl dlM) and IC@m.a&;bﬁl ([ZDLLZ}I) The dynamic behaviour of the model is

characterised by generalised impulse response functions. The two applications show how

the strategy works in practice and how the estimated model can be interpreted using
impulse responses and highest density regions.
In this work the LVSTAR process is assumed stationary, unless the transition variable

is time, but generalizing the approach to nonstationary linearly cointegrated series, as

in ), appears straightforward. This is true as long as the short-run
dynamic behaviour of the model, including the drift towards the equilibrium, is char-
acterized using nonlinearity of STAR type. Specifying and accommodating a nonlinear
equilibrium correction relation is from a statistical point of view a much more complicated

problem. Some discussion can be found in IBJp_a.m_a.ﬂd_S_a.lk]ﬁm_e.J (|2_(m_l|) We leave these

extensions to further work.
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Figure 1: Top panel: Monthly growth rate of gasoline price (log difference); Bottom panel: Monthly
growth rate of gasoline consumption (log difference), both from February 1973 to December 1998.
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Table 1: p-values of linearity tests for the VAR(2) model against the LVSTAR model in Section [Tl The upper part is the linearity tests in the gasoline price
change equation, and the lower part is the linearity tests in the gasoline consumption change equation. 3¢ is the third-order parsimonious test. trans. wvariable
stands for transition variables, WLK for Wilks’s statistic, RAO for Rao’s statistic and WB for wild bootstrap. All p-values are multiplied by 100.

trans. variable Yit—1 Yi—2 Yi1i-3 Yie—4 Yie—5 Yie—6 Y2e—1 Y2t—2 Y2t-3 Y2,t-4 Y21i-5 Y24—6 t/T

Order Test Gasoline price change equation

1 WLK 0.10 0.14 025 0.00 0.01 31.82 08 941 6.65 0.00 5491 1745 7.11
RAO 0.10 0.14 0.25 0.00 0.01 31.83 086 942 6.66 0.00 54.92 1746 7.12
WB 2.68 252 1812 4.66 6.42 11.26 23.92 2440 69.00 19.24 50.22 30.16 1.40

3 WLK 0.00 0.69 0.06 0.06 0.02 27.26 2250 7.30 30.66 0.17 39.20 54.55 14.98
RAO 0.00 0.71 0.06 0.06 0.02 27.53 2275 743 3095 0.17 39.50 54.83 15.19
WB 538 26.44 228 0.62 230 56.80 54.64 11.34 88.98 3.46 88.08 49.72 4.32

3¢ WLK 024 002 022 0.00 0.01 4227 164 16.67 9.05 0.01 5884 23.23 9.03
RAO 0.25 0.02 0.22 0.00 0.01 4229 164 16.69 9.06 0.01 5886 23.25 9.04
WB 538 224 752 1.72 592 3450 36.06 12.62 78.42 12.62 55.68 35.72 3.86

Order Test Gasoline consumption change equation

1 WLK 3.24 022 0.09 21.41 21.42 23.23 0.00 19.77 20.23 44.91 44.71 93.13 0.07
RAO 325 022  0.09 21.42 2143 2324 0.00 19.79 20.24 44.93 44.73 93.13 0.07
WB 1.06 024 0.10 32.74 82.66 15.64 4.84 36.34 50.28 70.72 2870 91.46 2.52

3 WLK 0.00 043 028 19.86 6.46 56.26 0.00 17.24 10.58 73.68 81.04 17.04 0.00
RAO 0.00 044 0.29 20.10 6.58 56.54 0.01 1747 10.75 73.89 81.21 17.26  0.00
WB 0.04 056 0.12 3.36 14.34 2822 430 4788 27.14 7880 44.62 53.12 0.82

3¢ WLK 430 0.27 0.11 3294 19.12 16.65 0.01 2748 31.90 60.63 55.47 58.99 0.08
RAO 431 027 011 3296 19.14 16.67 0.01 2750 31.92 60.65 5549 59.01 0.08
WB 252 0.26 0.04 42.00 49.48 14.28 13.78 43.94 70.38 39.30 34.86 97.14 5.28

SOINSI pue So[qe],




8¢

Table 2: p-values of misspecification tests of the estimated model (Z2). GP stands for gasoline price change equation, and GC stands for gasoline consumption
change equation. The tests of no additive nonlinearity are based on the third-order Taylor expansion. WLK stands for Wilks’s statistic, RAO for Rao’s statistic
and WB for wild bootstrap. All p-values are multiplied by 100.

Joint error serial correlation Joint parameter constancy

lags(J) 1 2 3 4 5 6 7 8 9 10 eq. GP GC P&C
WLK 7093 9.17 19.99 35.31 2543 36.51 18.43 25.74 5.05 16.05 | WLK 52.74 10.53 27.37
RAO 70.93 9.17 20.00 35.32 2545 36.54 18.47 25.80 5.09 16.14 | RAO 54.34 11.45 29.48
WB  90.00 11.00 32.50 50.30 35.90 72.30 60.10 60.10 24.50 57.20| WB 2880 35.60 46.60

No additive nonlinearity

eq. test  Yiio1 Yie—2 Yii-3 Yii—4  Yig—s  Yii—6  Y2i-1 Y2i-2 Yo2u-3 You-a Yoi-5 Yo t/T
GP WLK 346 1785 041 1.75 1.59 20.85 &.75 7871 66.47 045 84.65 7.41 86.43
RAO 347 1788 042 176 160 20.88 877 78.73 66.50 0.45 84.66 7.43 86.45
WB  45.10 73.40 13.10 25.20 24.10 67.00 1240 70.00 &89.30 4.60 76.90 67.60 40.90
GC WLK 581 64.24 3779 463 11.24 810 93.22 31.05 34.43 74.13 26.96 60.22 6.29
RAO 583 64.27 3783 4.65 11.26 &8.12 93.23 31.09 34.47 74.15 26.99 60.25 6.31
WB 63.00 27.00 50.00 4.00 6.30 9.50 67.00 31.20 11.20 5940 13.20 &88.40 37.90

SOINSI pue So[qe],



Tables and Figures

Table 3: p-values of the wild bootstrap version of the third-order LM-type misspecification tests for the
estimated model (Z4]) and (TH]) against additive nonlinearity. Jokul stands for the Jokulsd flow equation,
and Vatn for the Vatnsdalsa flow equation. Only the wild bootstrap results from the third-order linearity
tests are reported. All p-values are multiplied by 100.

Lin to R2 R2 to R3 R3 to R4

Trans. variable | Jokul Vatn | Jokul Vatn | Jokul Vatn
Yi,t—1 0.00 3.06 | 0.10 0.00 | 0.00 0.30
Y1,t—2 0.00 438 | 0.10 0.00 | 0.40 0.00
Y1,6-3 0.00 1.70 | 0.80 0.00 | 7.40  0.00
Y1,t—4 0.00 15.82| 3.70 0.10 | 10.80 0.90
Y1,t—5 0.00 59.20 | 0.60 0.10 | 16.80 1.20
Y1,t—6 0.00 7.58 | 570  0.00 | 42.50 0.80
Yi,4—7 0.00 10.60 | 0.10 0.00 | 6.70  0.10
Y2,t-1 1.46  0.00 | 0.40 0.00 | 0.00 0.00
Yo,t—2 2.18  0.16 | 0.30 0.00 | 7.90 0.00
Yo.1—3 1.54 214 | 0.70 0.00 | 3.90 0.00
Y2,t—4 536 13.24 | 3.60 0.00 | 12.20 0.00
Y2,t—5 6.40 33.44 | 550 0.00 | 1.90 0.20
Y2.1—6 4.16 12.80 | 3.30 0.00 | 4.60 0.10
Y2,t-7 9.28 7.76 | 9.30 0.00 | 26.00 0.00
Ty q 0.00 0.02 | 0.10 0.10 | 0.20 1.40
Ty_o 0.18 0.00 | 11.90 0.00 | 0.10  1.60
Ty 3 8.68 1.04 | 0.30 0.00 | 17.40 65.00
2 0.00  0.00 | 82.60 10.60 | 53.70 80.50

Table 4: p-values of the wild bootstrap version of the LM-type joint serial correlation tests of the
estimated model (Z4) and (ZH). The sample size of the wild bootstrapping is 1000. The p-values are all
multiplied by 100.

Joint error serial correlation
lag(J) 1 2 3 4 5 6 7 8 9 10
100x p-value | 36.60 1.20 13.50 14.00 27.60 3.40 12.40 12.10 24.10 10.70

Table 5: p-values of the wild bootstrap version of the partial and joint parameter constancy tests of
the estimated model (Z4) and (ZH). All p-values are multiplied by 100.

Partial and joint parameter constancy
test Jokul Vatns  Joint
100x p-value | 5.30  45.4 9.70
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Figure 2: Transition functions for the gasoline price change equation and the consumption change
equation. Top panel: the first transition driven by y; +—4 in the price equation; Mid-panel: the second
transition driven by y1 -5 in the price equation; Bottom panel: the transition driven by y; ;-1 in the

consumption equation. Each circle represents an observation.
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Figure 3: Values of the transition functions over time. Top panel: the transition driven by y; ;—4 in
the price equation; Mid-panel: the transition driven by %7 ;—5 in the price equation; Bottom panel: the

transition driven by y1,;—1 in the consumption equation.
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Figure 4: Stability of the two processes. Top panel: the price change equation, stable point= —0.302.

Bottom panel: the consumption change equation, stable point= 0.218.
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Figure 5: Boxplots of generalized impulse response functions of the LVSTAR model (Z.2)) represented
with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel: gasoline price
percent change to positive price shocks; Top right panel: gasoline price percent change to negative

price shocks. Bottom left panel: gasoline consumption percent change to positive price shocks; Bottom

right panel: gasoline consumption percent change to negative price shocks.
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Figure 6: Boxplots of generalized impulse response functions of the LVSTAR model (Z2) represented
with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel: gasoline price
percent change to positive consumption shocks; Top right panel: gasoline price percent change to
negative consumption shocks. Bottom left panel: gasoline consumption percent change to positive

consumption shocks; Bottom right panel: gasoline consumption percent change to negative consumption
shocks.
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Figure 7: Daily river flow, precipitation and temperature series, 1972-1974.

(d) Temperature in centigrades °C
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(b) Transition variable; the inflection point (solid line) and the interval for the smooth transition (dashed
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(c) Values of the transition function over time.

Figure 8: Transitions of the Jokulsa flow driven by the temperature.
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(c) Values of the transition function over time.

Figure 9: Transitions of the Vatnsdalsd flow driven by the temperature.
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Figure 10: Transitions of the Jokulsd flow driven by the precipitation.
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(a) Estimated transition function. Each circle represents an observation.
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(b) Transition variable; the inflection point (solid line) and the interval for the smooth transition (dashed
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Figure 11: Transitions of the Vatnsdalsd flow driven by the precipitation.
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(b) Jokulsd shocks Jokulsd (+) z; > 0.4

| HHEHEEBEEE@QQQE;@&%* | HHHHHHHHMEBBHHHHHEHHHEEHE

rTrrrrrrrrrrrrrr T T T T T T T T T T T rTT
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(c) Jokulsa shocks Jokulsé (-) z¢ < 0.4
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(d) Jokulsd shocks Jokulsd (-) z: > 0.4

Figure 12: Boxplots of generalized impulse response functions of the LVSTAR model (74) and (Z.5)
represented with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel:
Jokulséd to positive Jokulsd shocks below freezing; Top right panel: The same above freezing. Bottom
left panel: Jokulsa to negative Jokulsa shocks below freezing; Bottom right panel: The same above

freezing.
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Figure 13: Boxplots of generalized impulse response functions of the LVSTAR model (74) and (Z.5)
represented with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel:
Vatnsdalsé to positive Jokulsa shocks below freezing; Top right panel: The same above freezing. Bottom
left panel: Vatnsdalsd to negative Jokulsa shocks below freezing; Bottom right panel: The same above

freezing.
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(c) Jokulsa shocks Vatnsdalsa (-) z; < 0.4
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Figure 14: Boxplots of generalized impulse response functions of the LVSTAR model (74) and (Z.5)
represented with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel:
Jokulsé to positive Vatnsdalsa shocks below freezing; Top right panel: The same above freezing. Bottom
left panel: Jokulsa to negative Vatnsdalsa shocks below freezing; Bottom right panel: The same above

freezing.
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(b) Vatnsdalsd shocks Vatnsdalsa (+) z; > 0.4

SE=mEEESIS S TS

iy

rTrrrIrrTr T T T T T T T T T T T T T T T T T T T T TTT
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(d) Vatnsdalsd shocks Vatnsdalsd (-) z; > 0.4

Figure 15: Boxplots of generalized impulse response functions of the LVSTAR model (74) and (Z.5)
represented with 50 percent (box) and 80 percent (whisker) highest density regions. Top left panel:

Vatnsdalsé to positive Vatnsdalsd shocks below freezing; Top right panel: The same above freezing.

Bottom left panel: Vatnsdalsa to negative Vatnsdalsa shocks below freezing; Bottom right panel: The

same above freezing.
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