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1 Introduction

Motivation. In the last years, we can see an increasing interest to Frank-Wolfe algorithm
[3, 2, 10], which sometimes is called Conditional Gradient Method (CGM) [5, 7, 8]. At
each iteration of this scheme, we need to solve an auxiliary problem of minimizing a
linear function over a convex feasible set. In some situations, mainly when the feasible
set is a simple polytope, the complexity of this subproblem is much lower than that of
the standard projection technique (e.g. [11]). The standard complexity results for this
method are related to convex objective function with Lipschitz-continuous gradient. In
this situation, CGM converges as O( 1k ), where k is the number of iterations. Moreover,
it appears that this rate of convergence is optimal for methods with linear optimization
oracle [9].

For nonsmooth functions, CGM cannot converge (we give a simple example in Sec-
tion 2). Therefore, it is interesting to study the dependence of the rate of convergence of
CGM on the level of smoothness of the objective function. On the other hand, sometimes
nonsmoothness of the objective function results from a complementary regularization
term. This situation can be treated in the framework of composite minimization [12].
However, the performance of CGM for this structure of the objective function was not
studied yet. Finally, by its spirit, CGM is a primal-dual method. Indeed, it generates
the lower bounds on the optimal value of the objective function, which converge to the
optimal value [4]. Therefore, it would be natural to extract from this method an approx-
imate solution of the dual problem. These questions served as the main motivation for
this paper

Contents. In Section 2, we introduce our main problem of interest, where the objective
function has a composite form. Our main assumption is that the problem of minimizing
a linear function augmented by a simple convex complementary term is solvable.1) We
assume that the smooth part of the objective has Hölder-continuous gradients. For proving
efficiency estimate for CGM, we apply the technique of estimate sequences (e.g. [11]) in
its extended form [16]. As a result, we get a significant freedom in the choice of step-size
coefficients. In this section we also consider a variant of augmented CGM, which can be
seen as a trust-region method with linear model of the objective. For this scheme, the
trust region is formed by contracting the feasible set towards the current test point.

Our bounds for the primal-dual gap are very similar to bounds in [4]. However, they
are obtained for the difference of the current value of the objective function and the
minimal value of the accumulated linear model. In Section 3 we explain how to extract
from this information an upper bound on the duality gap for some feasible primal-dual
solution. In our technique we use an explicit max-representation of the smooth part of
the objective function.

In Section 4, we show that the additional properties of complementary part of the
objective (strong convexity) significantly accelerate the scheme. Finally, in Section 5, we
apply our technique for a new second-order trust-region method, where the quadratic
approximation of our objective function is minimized on a trust region formed by a con-
tracted feasible set. To the best of our knowledge, this is the first trust-region scheme [1]
supported by the worst-case complexity analysis.

1) Performance of CGM as applied to objective function regularized by a norm was studied in [6].
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Notation. In what follows, we consider optimization problems over finite-dimensional
linear space E with the dual space E∗. The value of linear function s ∈ E∗ at x ∈ E is
denoted by ⟨s, x⟩. In E, we fix a norm ∥ · ∥, which defines the conjugate norm

∥s∥∗ = max
x

{⟨s, x⟩ : ∥x∥ ≤ 1}, s ∈ E∗.

For a linear operator A : E → E∗
1, its conjugate operator A∗ : E1 → E∗ is defined by

identity
⟨Ax, y⟩ = ⟨A∗y, x⟩, x ∈ E, y ∈ E1.

We call operator B : E → E∗ self-conjugate if B = B∗. It is positive-semidefinite if
⟨Bx, x⟩ ≥ 0 for all x ∈ E. For a linear operator B : E → E∗, we define its operator norm
in the usual way:

∥B∥ = max
x

{∥Bx∥∗ : ∥x∥ ≤ 1}.

For a differentiable function f(x) with dom f ⊆ E, we denote by ∇f(x) ∈ E∗ its gradient,
and by ∇2f(x) : E → E∗ its Hessian. Note that

(
∇2f(x)

)∗
= ∇2f(x).

In the sequel, we often need to estimate from above the partial sums of different series.
For that, it is convenient to use the following trivial lemma.

Lemma 1 Let function ξ(τ), τ ∈ R, be convex. Then, for any two integers a and b, such
that [a− 1

2 , b+
1
2 ] ⊂ dom ξ, we have

b∑
k=a

ξ(k) ≤
b+1/2∫
a−1/2

ξ(τ) dτ. (1.1)

2 Conditional gradient methods

In this paper we consider numerical methods for solving the following composite mini-
mization problem:

min
x

{
f̄(x)

def
= f(x) + Ψ(x)

}
, (2.1)

where Ψ is a simple closed convex function with bounded domain, and f is a convex
function, which is subdifferentiable on domΨ ⊂ E. Denote by x∗ one of the optimal

solutions of (2.1), and D
def
= diam(domΨ). Our assumption on simplicity of function Ψ

means that some auxiliary optimization problems over this set are solvable. Complexity
of these problems will be always discussed before the corresponding optimization schemes.

The most important examples of function Ψ are as follows.

• Ψ is an indicator function of a closed convex set Q:

Ψ(x) = IndQ(x)
def
=

{
0, x ∈ Q,

+∞, otherwise.
(2.2)

• Ψ is a self-concordant barrier for a closed convex set Q (see [14, 11]).

• Ψ is a nonsmooth convex function with simple structure (e.g. Ψ(x) = ∥x∥1).
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We assume that function f is represented by a black-box oracle. If it is a first-order
oracle, we assume its gradients satisfy the following Hölder condition:

∥∇f(x)−∇f(y)∥∗ ≤ Gν∥x− y∥ν , x, y ∈ domΨ. (2.3)

Constant Lν is formally defined for any ν ∈ (0, 1]. For some values of ν it can be +∞.
Note that for any x and y in domΨ we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Gν
1+ν ∥y − x∥1+ν . (2.4)

If this is a second-order oracle, we assume that its Hessians satisfy Hölder condition

∥∇2f(x)−∇2f(y)∥ ≤ Hν∥x− y∥ν , x, y ∈ domΨ. (2.5)

In this case, for any x and y in domΨ we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1
2⟨∇

2f(x)(y − x), y − x⟩+ Hν∥y−x∥2+ν

(1+ν)(2+ν) . (2.6)

For Conditional Gradient Methods (CGM) our assumption on simplicity of function Ψ
means exactly the following.

Assumption 1 For any s ∈ E∗, the auxiliary problem

min
x∈domΨ

{⟨s, x⟩+Ψ(x)} (2.7)

is easily solvable. Denote by vΨ(s) ∈ domΨ one of its optimal solutions.

In the case (2.2), this assumption implies that we are able to solve the problem

min
x

{⟨s, x⟩ : x ∈ domΨ}.

Note that point vΨ(s) is characterized by the following variational principle:

⟨s, x− vΨ(s)⟩+Ψ(x) ≥ Ψ(vΨ(s)), x ∈ domΨ. (2.8)

In order to solve problem (2.1), we apply the following method.

Conditional Gradient Method, Type I

1. Choose an arbitrary point x0 ∈ domΨ.

2. For t ≥ 0 iterate: a) Compute vt = vΨ(∇f(xt)).

b) Choose τt ∈ (0, 1] and set xt+1 = (1− τt)xt + τtvt.

(2.9)

It is clear that this method can minimize only functions with continuous gradient.
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Example 1 Let Ψ(x) = IndQ(x) with Q = {x ∈ R2 : (x(1))2 + (x(2))2 ≤ 1}. Define

f(x) = max{x(1), x(2)}.

Then clearly x∗ =
(

1√
2
, 1√

2

)T
. Let us choose in (2.9) x0 ̸= x∗.

For function f , we can apply an oracle, which returns at any x ∈ domΨ a subgradient
∇f(x) ∈ {(1, 0)T , (0, 1)T }. Then, for any feasible x, the point vΨ(∇f(x)) is equal either
to y1 = (−1, 0)T , or to y2 = (0,−1)T . Therefore, all points of the sequence {xt}t≥0,
generated by method (2.9), belong to triangle Conv{x0, y1, y2}, which does not contain x∗.
2

In order to justify the rate of convergence of method (2.9) for functions with Hölder
continuous gradients, we apply the estimate sequences technique [11] in its relaxed form [16].
For that, it is convenient to introduce in (2.9) new control variables. Consider a sequence
of nonnegative weights {at}t≥0. Define

At =
t∑

k=0

ak, τt = at+1

At+1
, t ≥ 0. (2.10)

From now on, we assume that parameter τt in method (2.9) is chosen in accordance
to the rule (2.10). Denote

V0 = max
x

{⟨∇f(x0), x0 − x⟩+Ψ(x0)−Ψ(x)} ,

Bν,t = a0V0 +

(
t∑

k=1

a1+ν
k
Aν

k

)
GνD

1+ν , t ≥ 0.

(2.11)

It is clear that

V0

(2.6)

≤ max
x

{
f(x0)− f(x) + Gν

1+ν ∥x− x0∥1+ν +Ψ(x0)−Ψ(x)
}

≤ f̄(x0)− f̄(x∗) +
GνD1+ν

1+ν
def
= ∆(x0) +

GνD1+ν

1+ν .

(2.12)

Lemma 2 Let sequence {xt}t≥0 be generated by method (2.9). Then, for any ν ∈ (0, 1],
any step t ≥ 0, and any x ∈ domΨ we have

At(f(xt) + Ψ(xt)) ≤
t∑

k=0

ak[f(xk) + ⟨∇f(xk), x− xk⟩+Ψ(x)] +Bν,t. (2.13)

Proof:
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Indeed, in view of definition (2.11), for t = 0 inequality (2.13) is satisfied. Assume that it
is valid for some t ≥ 0. Then

t+1∑
k=0

ak[f(xk) + ⟨∇f(xk), x− xk⟩+Ψ(x)] +Bν,t

(2.13)

≥ At(f(xt) + Ψ(xt)) + at+1[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+Ψ(x)]

≥ At+1f(xt+1) +AtΨ(xt) + ⟨∇f(xt+1), at+1(x− xt+1) +At(xt − xt+1)⟩+ at+1Ψ(x)

(2.9)b
= At+1f(xt+1) +AtΨ(xt) + at+1 [Ψ(x) + ⟨∇f(xt+1), x− vt⟩]

(2.9)b
≥ At+1 (f(xt+1) + Ψ(xt+1)) + at+1 [Ψ(x)−Ψ(vt) + ⟨∇f(xt+1), x− vt⟩]

It remains to note that

Ψ(x)−Ψ(vt) + ⟨∇f(xt+1), x− vt⟩
(2.8)

≥ ⟨∇f(xt+1)−∇f(xt), x− vt⟩

(2.3)

≥ −τνt LνD
1+ν .

Thus, for keeping (2.13) valid for the next iteration, it is enough to choose

Bν,t+1 = Bν,t +
a1+ν
t+1

Aν
t+1

GνD
1+ν .

2

Corollary 1 For any t ≥ 0 with At > 0, and any ν ∈ (0, 1] we have

f̄(xt)− f̄(x∗) ≤ 1
At
Bν,t. (2.14)

Let us discuss now possible variants for choosing the weights {at}t≥0.

1. Constant weights. Let us choose at ≡ 1, t ≥ 0. Then At = t + 1, and for ν ∈ (0, 1)
we have

Bν,t = V0 +

(
t∑

k=1

1
(1+k)ν

)
GνD

1+ν
(1.1)

≤ V0 +GνD
1+ν 1

1−ν (1 + τ)1−ν
∣∣∣t+1/2

1/2

(2.12)

≤ ∆(x0) +GνD
1+ν

[
1

1+ν +
(
3
2

)1−ν 1
1−ν

((
1 + 2

3 t
)1−ν − 1

)]
Thus, for ν ∈ (0, 1), we have 1

At
Bν,t ≤ O(t−ν). For the most important case ν = 1,

we have lim
ν→1

1
1−ν

((
1 + 2

3 t
)1−ν − 1

)
= ln(1 + 2

3 t). Therefore,

f̄(xt)− f̄(x∗) ≤ 1
t+1

(
∆(x0) +G1D

2
[
1
2 + ln(1 + 2

3 t)
])

. (2.15)

In this situation, in method (2.9) we take τt
(2.10)
= 1

t+1 .
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2. Linear weights. Let us choose at ≡ t, t ≥ 0. Then At =
t(t+1)

2 , and for ν ∈ (0, 1)
with t ≥ 1 we have

Bν,t =

(
t∑

k=1

2νk1+ν

kν(1+k)ν

)
GνD

1+ν ≤
(

t∑
k=1

2νk1−ν
)
GνD

1+ν

(1.1)

≤ GνD
1+ν 2ν

2−ν τ
2−ν

∣∣∣t+1/2

1/2
= 2ν

2−ν

[(
t+ 1

2

)2−ν − (
1
2

)2−ν]
GνD

1+ν .

Thus, for ν ∈ (0, 1), we again have 1
At
Bν,t ≤ O(t−ν). For the case ν = 1, we get the

following bound:
f̄(xt)− f̄(x∗) ≤ 4

t+1G1D
2, t ≥ 1. (2.16)

As we can see, this rate of convergence is better than (2.15). In this case, in

method (2.9) we take τt
(2.10)
= 2

t+2 , which is a standard recommendation for CGM (2.9).

3. Aggressive weights. Let us choose, for example, at ≡ t2, t ≥ 0. Then At =
t(t+1)(2t+1)

6 . Note that for k ≥ 0 we have k2+ν

(k+1)ν(2k+1)ν ≤ k2−ν

2ν . Therefore, for

ν ∈ (0, 1) with t ≥ 1 we obtain

Bν,t =

(
t∑

k=1

6νk2(1+ν)

kν(1+k)ν(2k+1)ν

)
GνD

1+ν ≤
(

t∑
k=1

3νk2−ν
)
GνD

1+ν

(1.1)

≤ GνD
1+ν 3ν

3−ν τ
3−ν

∣∣∣t+1/2

1/2
= 3ν

3−ν

[(
t+ 1

2

)3−ν − (
1
2

)3−ν]
GνD

1+ν .

For ν ∈ (0, 1), we get again 1
At
Bν,t ≤ O(t−ν). For ν = 1, we obtain

f̄(xt)− f̄(x∗) ≤ 9
2t+1G1D

2, t ≥ 1., (2.17)

which is slightly worse than (2.16). The rule for choosing the coefficients τt in this

situation is τt
(2.10)
= 6(t+1)

(t+2)(2t+3) . It can be easily checked that the further increase of

the rate of growth of coefficients at makes the rate of convergence of method (2.9)
even worse.

Note that the above rules for choosing the coefficients {τt}t≥0 in method (2.9) do not
depend on the smoothness parameter ν ∈ (0, 1]. In this sense, method (2.9) is a universal
method for solving the problem (2.1) (see [13]). Moreover, this method does not depend
on the choice of the norm in E. Hence, its rate of convergence can be established with
respect to the best norm describing the geometry of the feasible set.

To conclude this section, let us consider a variant of method (2.9). For Ψ(x) ≡ IndQ (x)
these two methods coincide. Otherwise, they generate different minimization sequences.

Conditional Gradient Method, Type II

1. Choose an arbitrary point x0 ∈ domΨ.

2. For t ≥ 0 iterate: Choose coefficient τt ∈ (0, 1] and compute

xt+1 = argmin
y

{⟨∇f(xt), y⟩+Ψ(y) : y ∈ (1− τt)xt + τt domΨ} .

(2.18)
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This method can be seen as a Trust-Region Scheme [1] with linear model of objective
function. The trust region in (2.18) is formed by a contraction of the initial feasible set.
In Section 5, we consider a more traditional trust-region method with quadratic model of
the objective.

Note that point xt+1 in method (2.18) is characterized by the following variational
principle:

xt+1 = (1− τt)xt + τtvt, vt ∈ domΨ,

Ψ((1− τt)xt + τtx) + τt⟨∇f(xt), x− xt⟩

≥ Ψ(xt+1) + ⟨∇f(xt), xt+1 − xt⟩, x ∈ domΨ.

(2.19)

Let us choose somehow the sequence of nonnegative weights {at}t≥0, and define in (2.18)
the coefficients τt in accordance to (2.10). Define now the estimate functional sequence
{ϕt(x)}t≥0 as follows:

ϕ0(x) = a0f̄(x),

ϕt+1(x) = ϕt(x) + at+1[f(xt) + ⟨∇f(xt), x− xt⟩+Ψ(x)], t ≥ 0.
(2.20)

Clearly, for all t ≥ 0 we have

ϕt(x) ≤ Atf̄(x), x ∈ domΨ. (2.21)

Denote

Cν,t = a0∆(x0) +
1

1+ν

(
t∑

k=1

a1+ν
k
Aν

k

)
GνD

1+ν , t ≥ 0. (2.22)

Lemma 3 Let sequence {xt}t≥0 be generated by method (2.18). Then, for any ν ∈ (0, 1]
and any step t ≥ 0, we have

Atf̄(xt) ≤ ϕt(x) + Cν,t, x ∈ domΨ. (2.23)

Proof:
For t = 0, we have Cν,0 = a0[f̄(x0)− f̄(x∗)]. Thus, (2.23) follows from (2.21).

Assume now that (2.23) is valid for some t ≥ 0. In view of definition (2.10), optimality
condition (2.19) can written in the following form:

at+1⟨∇f(xt), x− xt⟩ ≥ At+1 [Ψ(xt+1)−Ψ((1− τt)xt + τtx) + ⟨∇f(xt), xt+1 − xt⟩]

for all x ∈ domΨ. Therefore,

ϕt+1(x) + Cν,t = ϕt(x) + Cν,t + at+1[f(xt) + ⟨∇f(xt), x− xt⟩+Ψ(x)]

(2.23)

≥ At[f(xt) + Ψ(xt)] + at+1[f(xt) + Ψ(x)]

+At+1 [Ψ(xt+1)−Ψ((1− τt)xt + τtx) + ⟨∇f(xt), xt+1 − xt⟩]

≥ At+1 [f(xt) + ⟨∇f(xt), xt+1 − xt⟩+Ψ(xt+1)]

(2.4)

≥ At+1

[
f̄(xt+1)− 1

1+νGν∥xt+1 − xt∥1+ν
]
.
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It remains to note that ∥xt+1 − xt∥ = τt∥xt − vt∥
(2.10)

≤ at+1

At+1
D. Thus, we can take

Cν,t+1 = Cν,t +
1

1+ν

a1+ν
t+1

Aν
t+1

GνD
1+ν .

2

In view of (2.21), inequality (2.23) results in the following rate of convergence:

f̄(xt)− f̄(x∗) ≤ 1
At
Cν,t, t ≥ 0. (2.24)

Note that for linearly growing weights at = t, At = t(t+1)
2 , t ≥ 0, we have already

estimated

Cν,t = 1
1+νBν,t ≤ 2ν

(1+ν)(2−ν)

[(
t+ 1

2

)2−ν − (
1
2

)2−ν]
GνD

1+ν .

Therefore, for ν = 1, we get the following rate of convergence:

f̄(xt)− f̄(x∗) ≤ 2
t+1G1D

2, t ≥ 1. (2.25)

3 Computing the primal-dual solution

Note that both methods (2.9) and (2.18) admit computable accuracy certificates. For the
first method, denote

ℓt = 1
At

min
x

{
t∑

k=0

ak[f(xk) + ⟨∇f(xk), x− xk⟩+Ψ(x)] : x ∈ domΨ

}
.

Clearly,

f̄(xt)− f̄(x∗) ≤ f̄(xt)− ℓt
(2.13)

≤ 1
At
Bν,t. (3.1)

For the second method, let us choose a0 = 0. Then the estimate functions are linear:

ϕt(x) =
t∑

k=1

ak[f(xk−1) + ⟨∇f(xk−1), x− xk−1⟩+Ψ(x)].

Therefore, defining ℓ̂t =
1
At

min
x

{ϕt(x) : x ∈ domΨ}, we also have

f̄(xt)− f̄(x∗) ≤ f̄(xt)− ℓ̂t
(2.13)

≤ 1
At
Cν,t, t ≥ 1. (3.2)

Accuracy certificates (3.1) and (3.2) justify that both methods (2.9) and (2.18) are
able to recover some information on the optimal dual solution. However, in order to
implement this ability, we need to open the Black Box and introduce an explicit model of
the function f(x).

Let us assume that function f is representable in the following form:

f(x) = max
u

{⟨Ax, u⟩ − g(u) : u ∈ Qd}, (3.3)

8



where A : E → E∗
1, Qd is a closed convex set in a finite-dimensional linear space E2, and

function g(·) is p-uniformly convex on Qd:

⟨∇g(u1)−∇g(u2), u1 − u2⟩ ≥ σg∥u1 − u2∥p, u1, u2 ∈ Qd,

where the convexity degree p ≥ 2.

It is well known (e.g. [13]) that in this case, for ν = 1
p−1 we have Gν =

(
1
σg

) 1
p−1

.

In view of Danskin Theorem, ∇f(x) = A∗u(x), where u(x) ∈ Qd is the unique optimal
solution to optimization problem in the representation (3.3).

Let us write down the dual problem to (2.1).

min
x

{f̄(x) : x ∈ domΨ} (3.3)
= min

x

{
Ψ(x) + max

u
{⟨Ax, u⟩ − g(u) : u ∈ Qd}

}
≥ max

u∈Qd

{
−g(u) + min

x
{⟨A∗u, x⟩+Ψ(x)}

}
.

Thus, defining Φ(u) = min
x

{⟨A∗u, x⟩+Ψ(x)}, we get the following dual problem:

max
u∈Qd

{
ḡ(u)

def
= −g(u) + Φ(u)

}
. (3.4)

In this problem, the objective function is nonsmooth and uniformly strongly concave of
degree p. Clearly, we have

f̄(x)− ḡ(u) ≥ 0, x ∈ domΨ, u ∈ Qd. (3.5)

Let us show that both methods (2.9) and (2.18) are able to approximate the optimal
solution to the dual problem (3.4).

Note that for any x̄ ∈ domΨ we have

f(x̄) + ⟨∇f(x̄), x− x̄⟩ (3.3)
= ⟨Ax̄, u(x̄)⟩ − g(u(x̄)) + ⟨A∗u(x̄), x− x̄⟩

= ⟨Ax, u(x̄)⟩ − g(u(x̄)).

Therefore, denoting for the first method (2.9) ut =
1
At

t∑
k=0

aku(xk), we obtain

ℓt = min
x∈domΨ

{
Ψ(x) + 1

At

t∑
k=0

ak[⟨Ax, u(xk)⟩ − g(u(xk)]

}

= Φ(ut)− 1
At

t∑
k=0

akg(u(xk)) ≤ ḡ(ut).

Thus, we get

0
(3.5)

≤ f̄(xt)− ḡ(ut) ≤ f̄(xt)− ℓt
(3.1)

≤ 1
At
Bν,t, t ≥ 0. (3.6)

For the second method (2.18), we need to choose a0 = 0 and take ut =
1
At

t∑
k=1

aku(xk−1).

In this case, by the similar reasoning, we get

0
(3.5)

≤ f̄(xt)− ḡ(ut) ≤ f̄(xt)− ℓ̂t
(3.2)

≤ 1
At
Cν,t, t ≥ 1. (3.7)
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4 Strong convexity of function Ψ

In this section, we assume that function Ψ in problem (2.1) is strongly convex (see, for
example, Section 2.1.3 in [11]). This means that there exists a positive constant σΨ such
that

Ψ(τx+ (1− τ)y) ≤ τΨ(x) + (1− τ)Ψ(y)− 1
2σΨτ(1− τ)∥x− y∥2 (4.1)

for all x, y ∈ domΨ and τ ∈ [0, 1]. Let us show that in this case CG-methods converge
much faster. We demonstrate it for method (2.9).

In view of strong convexity of Ψ, the variational principle (2.8), characterizing the
point vt in method (2.9) can be strengthen:

Ψ(x) + ⟨∇f(xt), x− vt⟩ ≥ Ψ(vt) +
1
2σψ∥x− vt∥2, x ∈ domΨ. (4.2)

Let V0 be defined as in (2.11). Denote

B̂ν,t = a0V0 +

(
t∑

k=1

a1+2ν
k

A2ν
k

)
G2

νD
2ν

2σΨ
, t ≥ 0. (4.3)

Lemma 4 Let sequence {xt}t≥0 be generated by method (2.9), and function Ψ is strongly
convex. Then, for any ν ∈ (0, 1], any step t ≥ 0, and any x ∈ domΨ we have

At(f(xt) + Ψ(xt)) ≤
t∑

k=0

ak[f(xk) + ⟨∇f(xk), x− xk⟩+Ψ(x)] + B̂ν,t. (4.4)

Proof:
The beginning of the proof of this statement is very similar to that of Lemma 2. Assuming
that (4.4) is valid for some t ≥ 0, we get the following inequality:

t+1∑
k=0

ak[f(xk) + ⟨∇f(xk), x− xk⟩+Ψ(x)] +Bν,t

≥ At+1 (f(xt+1) + Ψ(xt+1)) + at+1 [Ψ(x)−Ψ(vt) + ⟨∇f(xt+1), x− vt⟩] .

Further.

Ψ(x)−Ψ(vt) + ⟨∇f(xt+1), x− vt⟩
(4.2)

≥ ⟨∇f(xt+1)−∇f(xt), x− vt⟩+ 1
2σΨ∥x− vt∥2

(2.3)

≥ − 1
2σΨ

∥∇f(xt+1)−∇f(xt)∥2∗

(2.3)

≥ − 1
2σΨ

(
aνt+1

Aν
t+1

GνD
ν
)2

.

Thus, for keeping (4.4) valid for the next iteration, it is enough to choose

B̂ν,t+1 = B̂ν,t +
1

2σΨ

a1+2ν
t+1

A2ν
t+1

G2
νD

2ν .

2
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It can be easily checked that in our situation, the linear weights strategy at ≡ t is not
the best one. Let us choose at = t2, t ≥ 0. Then At =

t(t+1)(2t+1)
6 , and we get

B̂ν,t =

(
t∑

k=1

62νk2(1+2ν)

k2ν(k+1)2ν(2k+1)2ν

)
G2

νD
2ν

2σΨ
≤

(
32ν

t∑
k=1

k2(1−ν)
)
G2

νD
2ν

2σΨ

(1.1)

≤ G2
νD

2ν

2σΨ
· 32ν

3−2ν τ
3−2ν

∣∣∣t+1/2

1/2
= 32ν

3−2ν

[
(t+ 1

2)
3−2ν −

(
1
2

)3−2ν
]
G2

νD
2ν

2σΨ
.

Thus, for ν ∈ (0, 1), we get 1
At
B̂ν,t ≤ O(t−2ν). For ν = 1, we obtain

f̄(xt)− f̄(x∗) ≤ 54
(t+1)(2t+1) ·

G2
1D

2

2σΨ
, (4.5)

which is much better than (2.16).

5 Second-order trust-region method

Let us assume now that in problem (2.1) function f is twice continuously differentiable.
Then we can apply to this problem the following Trust-Region Method.

Trust-Region Method

1. Choose an arbitrary point x0 ∈ domΨ.

2. For t ≥ 0 iterate: Define coefficient τt ∈ (0, 1] and choose

xt+1 ∈ Argmin
y

{
⟨∇f(xt), y − xt⟩+ 1

2⟨∇
2f(xt)(y − xt), y − xt⟩+Ψ(y) :

y ∈ (1− τt)xt + τt domΨ
}
.

(5.1)

Note that this scheme is well defined even if the Hessian of function f is positive
semidefinite. Of course, in general, the computational cost of each iteration of this scheme
can be quite big. However, in one important case, when Ψ(x) is an indicator function
of a Euclidean ball, the complexity of each iteration of this scheme is dominated by the
complexity of matrix inversion. Thus, method (5.1) can be easily applied to problems of
the form

min
x

{f(x) : ∥x− x0∥ ≤ r}, (5.2)

where the norm ∥ · ∥ is Euclidean.
Let Hν < +∞ for some ν ∈ (0, 1]. In this section we assume that

⟨∇2f(x)h, h⟩ ≤ L∥h∥2, x ∈ domΨ, h ∈ E. (5.3)

Let us choose a sequence of nonnegative weights {at}t≥0, and define in (5.1) the coeffi-
cients {τt}t≥0 in accordance to (2.10). Define the estimate functional sequence {ϕt(x)}t≥0
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by recurrent relations (2.20), where the sequence {xt}t≥0 is generated by method (5.1).
Finally, denote

Ĉν,t = a0∆(x0) +

(
t∑

k=1

a2+ν
k

A1+ν
k

)
HνD2+ν

(1+ν)(2+ν) +

(
t∑

k=1

a2k
2Ak

)
LD2. (5.4)

Lemma 5 Let sequence {xt}t≥0 be generated by method (5.1). Then, for any ν ∈ [0, 1]
and any step t ≥ 0 we have

Atf̄(xt) ≤ ϕt(x) + Ĉν,t, x ∈ domΨ. (5.5)

Proof:
For t = 0, Ĉν,0 = a0[f̄(x0)− f̄(x∗)]. Therefore, inequality (5.5) is valid.

Note that the point xt+1 is characterized by the following variational principle:

xt+1 = (1− τt)xt + τtvt, vt ∈ domΨ,

Ψ(y) + ⟨∇f(xt) +∇2f(xt)(xt+1 − xt), y − xt+1⟩ ≥ Ψ(xt+1),

∀ y = (1− τt)xt + τtx, x ∈ domΨ.

Therefore, in view of definition (2.10), for any x ∈ domΨ we have

at+1⟨∇f(xt), x− xt⟩ ≥ At+1⟨∇f(xt) +∇2f(xt)(xt+1 − xt), xt+1 − xt⟩

+at+1⟨∇2f(xt)(xt+1 − xt), xt − x⟩

+At+1[Ψ(xt+1)−Ψ((1− τt)xt + τtx)]

(5.3)

≥ At+1⟨∇f(xt) +
1
2∇

2f(xt)(xt+1 − xt), xt+1 − xt⟩

+At+1[Ψ(xt+1)−Ψ((1− τt)xt + τtx)]−
a2t+1

2At+1
LD2.

Hence,

Atf̄(xt) + at+1[f(xt) + ⟨∇f(xt), x− xt⟩+Ψ(x)]

≥ AtΨ(xt) +At+1[f(xt) + ⟨∇f(xt) +
1
2∇

2f(xt)(xt+1 − xt), xt+1 − xt⟩]

+at+1Ψ(x) +At+1[Ψ(xt+1)−Ψ((1− τt)xt + τtx)]−
a2t+1

2At+1
LD2

(2.6)

≥ At+1[f(xt+1) + Ψ(xt+1)]−At+1
Hν∥xt+1−xt∥2+ν

(1+ν)(2+ν) − a2t+1

2At+1
LD2

≥ At+1f̄(xt+1)−
a2+ν
t+1

A1+ν
t+1

· HνD2+ν

(1+ν)(2+ν) −
a2t+1

2At+1
LD2.
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Thus, if (5.5) is valid for some t ≥ 0, then

ϕt+1(x) + Ĉν,t ≥ Atf̄(xt) + at+1[f(xt) + ⟨∇f(xt), x− xt⟩+Ψ(x)]

≥ At+1f̄(xt+1)−
a2+ν
t+1

A1+ν
t+1

· HνD2+ν

(1+ν)(2+ν) −
a2t+1

2At+1
LD2.

Thus, we can take Ĉν,t+1 = Ĉν,t +
a2+ν
t+1

A1+ν
t+1

· HνD2+ν

(1+ν)(2+ν) +
a2t+1

2At+1
LD2. 2

Thus, inequality (5.5) ensures the following rate of convergence of method (5.1)

f̄(xt)− f̄(x∗) ≤ 1
At
Ĉν,t. (5.6)

The particular expression of the right-hand side of this inequality can be obtained exactly
in the same way as in Section 2. Here, we restrict ourselves only by the case ν = 1 and
at = t2, t ≥ 0. Then At =

t(t+1)(2t+1)
6 , and

t∑
k=1

a3k
A2

k
=

t∑
k=1

36k6

k2(k+1)2(2k+1)2
≤ 18t,

t∑
k=1

a2k
2Ak

=
t∑

k=1

3k4

k(k+1)(2k+1) ≤ 3
2

t∑
k=1

k = 3
4 t(t+ 1).

Thus, we get
f̄(xt)− f̄(x∗) ≤ 18H1D3

(t+1)(t+2) +
9LD2

2(t+2) . (5.7)

Note that this rate of convergence is worse than that of the Newton method with cubic
regularization [15]. However, to the best of our knowledge, inequality (5.7) gives us the
first global rate of convergence obtained so far for an optimization scheme belonging to
the family of trust-region methods [1]. In view of inequality (5.5), the optimal solution
of the dual problem (3.4) can be approximated by method (5.1) with a0 = 0 in the same
way as it was done in Section 3 for Conditional Gradient Methods.
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