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Abstract. Each measurable map of an open set U ⊂ R
n to R

n is equal almost
everywhere to the gradient of a continuous almost everywhere differentiable
function defined on R

n that vanishes, together with its gradient, outside U .

A well-known theorem of Luzin [7, Théorème Fondamental, p. 90] asserts that
for each real-valued measurable function f defined on the real line R there is an
F ∈ C(R) such that F ′(x) = f(x) for almost all x ∈ R. The argument is based on a
skilful utilization of singular functions (devil’s staircases) defined on nondegenerate
compact subintervals of R. More recently, G. Alberti [1, Theorem 1] proved that
for each Borel vector field v defined on an open set U ⊂ R

n of finite measure there
are a compact set K ⊂ U and an F ∈ C1

c (U) such that the measure of U −K is as
small as we wish and ∇F (x) = v(x) for each x ∈ K.

We show that each continuous real-valued function f defined on the boundary
of a compact nondegenerate cube Q ⊂ R

n has a continuous almost everywhere
differentiable extension g : Q → R such that ∇g(x) = 0 for almost all x ∈ Q. Using
such extensions and Alberti’s theorem, we prove the result stated in the abstract by
following the main ideas of the original Luzin’s argument. Note that as in Alberti’s
theorem, we do not require that curl v = 0. An application to k-charges defined
in Section 4 below generalizes the multidimensional version of Luzin’s theorem
obtained in [5], and a fortiori that mentioned in [10, p.218].

The authors wish to acknowledge helpful discussions with T. De Pauw and
V. Sverak during the preparation of this note.

1. Preliminaries

Throughout, the ambient space is R
n where n ≥ 2 is a fixed integer. A cube is a

compact nondegenerate cube in R
n. The open ball in R

n of radius r > 0 centered
at x ∈ R

n is denoted by B(x, r). Given E ⊂ R
n, we denote by ∂E, intE d(E),

and |E| the boundary, interior, diameter , and Lebesgue measure of E, respectively.
Unless specified otherwise, all concepts related to measure refer tacitly to Lebesgue
measure in R

n. All functions we consider are real-valued.

Let E ⊂ R
n and x ∈ intE. For a map φ : E → R

m, m = 1, 2, . . . , we denote
by Dφ(x) the differential of φ at x; if m = 1, the i-th partial derivative of φ
at x is denoted by Diφ(x). The symbols C(E), C(E; Rm), C1(intE; Rm), and
C∞(intE; Rm) have the usual meaning; as customary, a subscript c will indicate
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compact supports. If E is measurable, we denote by L0(E; Rm) the space of all
measurable maps v : E → R

m.

In each R
m, we employ the Euclidean norm | · | induced by the usual inner

product x · y. Given E ⊂ R
n and φ : E → R

m, the extended real number

osc(φ) := sup
{∣∣φ(x) − φ(y)

∣∣ : x, y ∈ E
}

is called the oscillation of φ.

Observation 1.1. Let E ⊂ R
n, and let φi : E → R

m be such that
∑∞

i=1 osc(φi)
converges. If there is an x0 ∈ E such that

∑∞
i=1

∣∣φi(x0)
∣∣ converges, then

∑∞
i=1 φi

converges uniformly to a φ : E → R
m, and osc(φ) ≤ ∑∞

i=1 osc(φi).

Proof. The sum
∑∞

i=1 |φi| converges uniformly, since∣∣φi(x)
∣∣ ≤ ∣∣φi(x) − φi(x0)

∣∣ +
∣∣φi(x0)

∣∣ ≤ osc(φi) +
∣∣φi(x0)

∣∣
for each x ∈ E. As∣∣φ(x) − φ(y)

∣∣ ≤ ∞∑
i=1

∣∣φi(x) − φi(y)
∣∣ ≤ ∞∑

i=1

osc(φi)

for each x, y ∈ E, the observation follows.

2. A singular extension

Proposition 2.1. Let Q be a cube, and let f ∈ C(∂Q). There is an almost ev-
erywhere differentiable g ∈ C(Q) such that g � ∂Q = f, osc(g) = osc(f), and
Dg(x) = 0 for almost all x ∈ Q.

Proof. For closed sets Ai ⊂ Q and functions hi ∈ C(Ai) satisfying hi(x) = hj(x)
for each x ∈ Ai ∩ Aj and each i, j ∈ I, we denote by

∨
i∈I hi the unique function

h :
⋃

i∈I Ai → R such that h(x) = hi(x) for every x ∈ Ai. Note that
∨

i∈I hi is
continuous whenever I is finite.

For i = 0, 1, . . . , let Ci be the collection of all nonoverlapping congruent cubes
of diameter d(Q)/3i whose union is Q, and let C :=

⋃∞
i=0 Ci. Given C ∈ Ci, denote

by Ĉ the unique cube in Ci+1 contained in the interior of C, and let

C(C) := {K ∈ Ci+1 : K ⊂ C and K 	= Ĉ};
if i ≥ 1, the unique cube in Ci−1 containing C is denoted by C∨.

Choose a C ∈ Ci. For k = 0, . . . , n − 1, a k-face of C is a closed k-dimensional
face of C. As usual, 0-faces and 1-faces of C are called, respectively, vertices and
edges of C. The link of a k-face A of C is the union B of all (n− 1)-faces of C that
do not meet A. Given x ∈ C−(A∪B), let �x be the line passing through x and A if
A is a vertex of C, and the line passing through x and perpendicular to A otherwise.
Denoting by xA and xB the intersection of �x with A and B, respectively, we have
x = txA + (1 − t)xB for a unique t ∈ (0, 1). Now for a ϕ ∈ C(A ∪ B), let

ϕ∼(x) :=

{
ϕ(x) if x ∈ A ∪ B,
tϕ(xA) + (1 − t)ϕ(xB) if x ∈ C − (A ∪ B),
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and observe that ϕ∼ ∈ C(C) and osc(ϕ∼) = osc(ϕ). Next we describe a specific
extension of ϕ ∈ C(∂C) to a ϕ∗ defined on C∗ := Ĉ∪⋃

K∈C(C) ∂K. Denote by H

the (n − 1)-dimensional Hausdorff measure in R
n, and let

ϕC(x) :=
1

H(∂C)

∫
∂C

ϕ dH

for each x ∈ C. If K ∈ C(C), then the intersection AK := Ĉ∩ K is a k-face of K
whose link BK is contained in ∂C, and we let

ϕK :=
[
(ϕC � AK) ∨ (ϕ � BK)

]∼ and ϕ∗ := (ϕC � C )̂ ∨
∨

K∈C(C)

(ϕK � ∂K).

Clearly, ϕ∗ ∈ C(C∗) extends ϕ and osc(ϕ∗) = osc(ϕ).

The function f0 := f∗ is defined and continuous on Q0 := Q∗. Assuming that
Qi and fi ∈ C(Qi) have been defined for an i ≥ 0, let

Qi+1 := Qi ∪
⋃

C∈Ci

⋃
K∈C(C)

K∗ and fi+1 := fi ∨
∨

C∈Ci

∨
K∈C(C)

(fi � ∂K)∗,

and observe that fi+1 ∈ C(Qi+1) extends fi. The function g :=
∨∞

i=0 fi is defined
on D :=

⋃∞
i=0 Qi and extends f . If C ∈ C, then

osc
[
g � (C ∩ D)

]
= osc(g � ∂C), (2.1)

Ĉ ⊂ D, and g is constant on C .̂ Since
∑

C∈C |C |̂ = |Q|, we only need to show
that g is continuous and has a continuous extension to Q. To this end, select a
sequence {xi} in D converging to an x ∈ Q, and let N := 2n.

Assume x ∈ intQ. For sufficiently large i, the function g is piecewise linear on
∂C for each C ∈ Ci containing x. Select such a C, and denote by v1, . . . , vN its
vertices. Then g(x) = (1/N)

∑N
s=1 g(vs) for each x ∈ C ,̂ and

osc(g � ∂C) = max
{∣∣g(vs) − g(vt)

∣∣ : s, t = 1, . . . , N
}

.

Let x ∈ Ĉ and y ∈ ∂C. As y =
∑N

t=1 αtvt where αt ≥ 0 for t = 1, . . . , N and∑N
t=1 αt = 1, we obtain

∣∣g(y) − g(x)
∣∣ ≤ 1

N

N∑
s=1

∣∣g(y) − g(vs)
∣∣ ≤ 1

N

N∑
s=1

N∑
t=1

αt

∣∣g(vt) − g(vs)
∣∣

=
1
N

N∑
t=1

αt

N∑
s=1

∣∣g(vt) − g(vs)
∣∣ ≤ N − 1

N
osc(g � ∂C).

(2.2)

If v and w are vertices of K ∈ C(C) contained in ∂C, it is easy to see that∣∣g(v) − g(w)
∣∣ ≤ 1

3
osc(g � ∂C) ≤ N − 1

N
osc(g � ∂C). (2.3)

Since each vertex of K belongs either to ∂C or to C ,̂ from (2.1)–(2.3) we obtain

osc
[
g � (K ∩ D)

]
≤ N − 1

N
osc

[
g � (C ∩ D)

]
.

It follows that osc
[
g � (C ∩D)

]
→ 0 uniformly on {C ∈ Ci : x ∈ C} as i → ∞, and

the sequence
{
g(xi)

}
is Cauchy. In particular,

{
g(xi)

}
converges to g(x) whenever

x ∈ D; indeed, {x1, x, x2, x, . . . } is a sequence in D converging to x.
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Assume x ∈ ∂Q. Choose an ε > 0, end find a δ > 0 so that
∣∣f(y)− f(x)

∣∣ < ε for
each y ∈ ∂Q such that |y − x| < δ. Next find an integer k ≥ 1 so that C ⊂ B(x, δ)
for each C ∈ Ck with x ∈ C. For such a C, the function g is equal to a constant
c on (C∨)̂∩ ∂C, and it is linear on each one-dimensional segment in ∂C that is
parallel to an edge of C not contained in ∂Q. Consequently,

osc(g � ∂C) ≤ osc
[
f � (C ∩ ∂Q)

]
+ sup

{∣∣f(y) − c
∣∣ : y ∈ C ∩ ∂Q

}
< 2ε + sup

{∣∣f(y) − f(x)
∣∣ : y ∈ C ∩ ∂Q

}
+

∣∣f(x) − c
∣∣

< 3ε +
∣∣f(x) − c

∣∣.
(2.4)

If p is the number of vertices of C contained in ∂Q, then N/2 ≤ p ≤ N − 1. Let
Eb :=

[
pb + (N − p)c

]
/N , and observe that

∣∣f(x) − Ef(x)

∣∣ ≤ ∣∣f(x) − c
∣∣/2 and

Ef(x) − ε < Ef(x)−ε < g(z) < Ef(x)+ε < Ef(x) + ε

for each z ∈ C .̂ Thus given K ∈ C(C) containing x, and any z ∈ K ,̂∣∣f(x) − g(z)
∣∣ ≤ ∣∣f(x) − Ef(x)

∣∣ +
∣∣Ef(x) − g(z)

∣∣< 1
2

∣∣f(x) − c
∣∣ + ε.

An induction on i = 1, 2, . . . implies that if L ∈ Ck+i contains x, then∣∣f(x) − g(z)
∣∣ < 2−i

∣∣f(x) − c
∣∣ + ε

i−1∑
j=0

2−j (2.5)

for each z ∈ L .̂ Now (2.4), (2.5), and (2.1) yield osc
[
g � (L ∩ D)

]
< 6ε for all

sufficiently large i. We conclude the sequence
{
g(xi)

}
converges to f(x).

A function g that satisfies the conditions of Proposition 2.1 is called a singular
extension of f .

Corollary 2.2. Let U ⊂ R
n be open, and let f ∈ C(U) be differentiable almost

everywhere. Given η > 0, there is a g ∈ C(Rn) such that {g 	= 0} ⊂ U, osc(g) < η,
and Dg(x) = Df(x) for almost all x ∈ U.

Proof. Let C1, C2, . . . be nonoverlapping cubes whose union is U . As f is uniformly
continuous in each Ci, there are nonoverlapping cubes Qi,1, . . . , Qi,ki such that
Ci =

⋃ki

j=1 Qi,j and osc(f � Qi,j) < η/2i+2 for j = 1, . . . , ki, i = 1, 2, . . . . Find a
singular extension gi,j of f � ∂Qi,j , and let

fi,j(x) :=

{
f(x) − gi,j(x) if x ∈ Qi,j ,
0 if x ∈ R

n − Qi,j .

Observation 1.1 implies that g :=
∑∞

i=1

∑ki

j=1 fi,j is the desired function.

3. Luzin’s theorem

The following proposition is a mere reformulation, convenient for our purpose,
of the aforementioned result due to G. Alberti.

Proposition 3.1 (Alberti). Let U ⊂ R
n be an open set, and let v : U → R

n be a
Borel vector field. Given ε > 0, there are a closed set C ⊂ U and an f ∈ C1(Rn)
such that |U − C| < ε, {f 	= 0} ⊂ U , and Df(x) = v(x) for each x ∈ C.
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Proof. Let Ui :=
{
x ∈ U : i − 1 < |x| < i

}
for i = 1, 2, . . . . According to [1,

Theorem 1], there are compact sets Ki ⊂ Ui and functions fi ∈ C1(Rn) such that
|Ui − Ki| < ε/2i, {fi 	= 0} ⊂ Ui, and Dfi(x) = v(x) for each x ∈ Ki. Clearly, it
suffices to let C :=

⋃∞
i=1 Ki and f :=

∑∞
i=1 fi.

Lemma 3.2. Let U ⊂ R
n be an open set, and let v ∈ L0(U ; Rn). Given ε > 0 and

a closed set A ⊂ U , there are a g ∈ C(Rn) and a closed set C ⊂ U satisfying the
following conditions.

(1) |U − C| < ε, osc(g) < ε, and {g 	= 0} ⊂ U − A.
(2) g is differentiable almost everywhere in U − A.
(3) Dg(x) = v(x) for each x ∈ C − A.
(4) If x ∈ A ∪ (Rn − U) and h ∈ R

n, then
∣∣g(x + h)

∣∣ ≤ ε|h|.
(5) If x ∈ A ∪ (Rn − U), then g is differentiable at x and Dg(x) = 0.

Proof. Since v equals almost everywhere to a Borel vector field w : U → R
n, we

may assume that v is Borel. By Proposition 3.1, there are an f ∈ C1(Rn) and a
closed set C ⊂ U such that |U − C| < ε, {f 	= 0} ⊂ U , and Df(x) = v(x) for
each x ∈ C. Find disjoint nonoverlapping cubes Qi with

⋃∞
i=1 Qi = U − A. Select

a Δi ∈ (0, 1] that is smaller than the distance between Qi and A ∪ (Rn − U), and
let ηi := ε2−iΔi. If gi ∈ C(Rn) is associated with f � intQi and ηi according
to Corollary 2.2, then {gi 	= 0} ⊂ intQi, osc(gi) < ηi, and Dgi(x) = v(x) for
almost all x ∈ C ∩Qi. Observation 1.1 implies that g :=

∑∞
i=1 gi belongs to C(Rn)

and osc(g) < ε. Clearly, {g 	= 0} ⊂ U − A and g is differentiable at almost all
x ∈ U − A. Moreover, Dg(x) = v(x) for almost all x ∈ C − A. Making C smaller,
we may assume that Dg(x) = v(x) holds for all x ∈ C − A.

Choose an x ∈ A ∪ (Rn − U) and h ∈ R
n. If x + h does not belong to Qi, then

gi(x + h) = 0. On the other hand, if x + h is in Qi, then Δi < |h| and hence∣∣gi(x + h)
∣∣ =

∣∣gi(x + h) − gi(x)
∣∣ ≤ osc(gi) < ηi < ε2−i|h|.

Consequently
∣∣g(x + h)

∣∣ ≤ ε|h|. More precisely, if i(h) is the least positive integer
with x + h ∈ Qi, then∣∣g(x + h) − g(x)

∣∣ =
∣∣g(x + h)

∣∣ ≤ ∞∑
i=i(h)

∣∣gi(x + h)
∣∣ < ε|h|

∞∑
i=i(h)

2−i.

Since i(h) → ∞ as |h| → 0, we conclude g is differentiable at x and Dg(x) = 0.

Lemma 3.3. Let U ⊂ R
n be an open set, let v ∈ L0(U ; Rn), and let C0 := ∅.

Given ε > 0, there are gi ∈ C(Rn) and closed sets Ci ⊂ U such that the following
conditions are met for i = 1, 2, . . . .

(1) Ci−1 ⊂ Ci and |U − Ci| < ε/2i.
(2) osc(gi) < ε/2i and {gi 	= 0} ⊂ U − Ci−1.
(3) gi is differentiable almost everywhere in U − Ci−1.

(4) If fi :=
∑i

j=1 gj, then Dfi(x) = v(x) for each x ∈ Ci.

(5) If x ∈ Ci−1 ∪ (Rn − U) and h ∈ R
n, then

∣∣gi(x + h)
∣∣ ≤ 2−iε|h|.

(6) If x ∈ Ci−1 ∪ (Rn − U), then gi is differentiable at x and Dgi(x) = 0.
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Proof. Using Lemma 3.2, find an almost everywhere differentiable g1 ∈ C(Rn) and
a closed set C1 ⊂ U such that |U − C1| < ε/2, osc(g1) < ε/2, {g1 	= 0} ⊂ U , and
Dg1(x) = v(x) for each x ∈ C1. Since f1 = g1 and C0 = ∅, the function g1 satisfies
conditions (1)–(6).

Proceeding by induction, suppose that gi ∈ C(Rn) and closed sets Ci ⊂ U have
been defined for each positive integer i ≤ n − 1 so that conditions (1)–(6) are
satisfied with fi :=

∑i
j=1 gj . Using condition (3), find a w ∈ L0(U ; Rn) so that

w(x) = v(x) − Dfn−1(x) for almost all x ∈ U . Let gn ∈ C(Rn) and a closed set
C ⊂ U be associated with w, 2−nε, and Cn−1 according to Lemma 3.2. Clearly
gn satisfies conditions (2), (3), (5), and (6), and making C smaller, we may assume
that Dgn(x) = v(x) − Dfn−1(x) for all x ∈ C. The closed set Cn := Cn−1 ∪ C
satisfies condition (1), and for each x ∈ C − Cn−1,

Dfn(x) = Dfn−1(x) + Dgn(x) = v(x).

However, if x ∈ Cn−1, then Dgn(x) = 0 by condition (5) of Lemma 3.2. In view of
this and the induction hypothesis, Dfn(x) = Dfn−1(x) = v(x) for each x ∈ Cn−1,
which establishes condition (4).

Theorem 3.4. Let U ⊂ R
n be an open set, and let v ∈ L0(U ; Rn). Given ε > 0,

there is an almost everywhere differentiable f ∈ C(Rn) satisfying the following
conditions.

(1) osc(f) < ε and {f 	= 0} ⊂ U .
(2) Df(x) = v(x) for almost all x ∈ U .
(3) If x ∈ R

n − U , then f is differentiable at x and Df(x) = 0.

Proof. For i = 1, 2, . . . , let Ci ⊂ U and gi ∈ C(Rn) be associated with v and
a positive ε ≤ 1 according to Lemma 3.3, and let fi :=

∑i
j=1 gj . Observation 1.1

shows that f :=
∑∞

i=1 gi belongs to C(Rn) and osc(f) < ε. Since {f 	= 0} ⊂ U , we
only need to establish the differentiability conditions. Condition (3) holds, since

∣∣f(x + h) − f(x)
∣∣ ≤ ∞∑

i=1

∣∣gi(x + h)
∣∣ ≤ ε|h|

∞∑
i=1

2−i = ε|h|

for each x ∈ R
n − U and each h ∈ R

n. Note
∣∣U − ⋃∞

i=1 Ci

∣∣ = 0, and choose an
x ∈ ⋃∞

i=1 Ci. If x ∈ Cp, then gi(x) = Dgi(x) = 0 for i > p; since {Ci} is an
increasing sequence of sets. Let Di := Dgi(x) and D :=

∑p
i=1 Di. Choose a Δ > 0,

and find an integer q ≥ p with 2−q < Δ/2. There is a δ > 0 such that∣∣gi(x + h) − gi(x) − Di(h)
∣∣ ≤ Δ

2q
|h|

for each h ∈ R
n with |h| < δ, and i = 1, . . . , q. Consequently

∣∣f(x + h) − f(x) − D(h)
∣∣ ≤ q∑

i=1

∣∣gi(x + h) − gi(x) − Di(h)
∣∣ +

∞∑
i=q+1

∣∣gi(x + h)
∣∣

≤ Δ

2
|h| + |h|

∞∑
i=q+1

2−i ≤ Δ|h|
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for each h ∈ R
n with |h| < δ, and we conclude

Df(x) = D =
p∑

i=1

Dgi(x) = Dfp(x) = v(x).

4. Charges

For m = 0, . . . , n, the linear spaces of all m-forms and all m-vectors in R
n are

denoted by ∧m
R

n and ∧mR
n, respectively. Identifying ∧m

R
n and ∧mR

n with R
N

where N :=
(

n
m

)
, we denote by |ω| and |ξ| the Euclidean norms of ω ∈ ∧m

R
n and

ξ ∈ ∧mR
n. The collection of all simple m-vectors ξ ∈ ∧mR

n with |ξ| = 1 is the
Grassmanian G0(n, m).

Throughout this section, U ⊂ R
n is a fixed open set. If 0 ≤ m < n is an integer

and ω : U → ∧m
R

n is differentiable at x ∈ U , then dω(x) denotes the exterior
derivative of ω at x; the differential Dω(x) is defined in the obvious way.

Proposition 4.1. Let ω ∈ L0(U ;∧m+1
R

n) where 0 ≤ m ≤ n − 1. For each
ε > 0, there is an almost everywhere differentiable φ ∈ C(Rn;∧m

R
n) satisfying

the following conditions.

(1) osc(φ) < ε and {φ 	= 0} ⊂ U .
(2) dφ(x) = ω(x) for almost all x ∈ U .
(3) If x ∈ R

n − U , then φ is differentiable at x and Dφ(x) = 0.

Proof. Let ω :=
∑

i1<···<im+1
ai1···im+1 dξi1 ∧ · · · ∧ dξim+1 where ai1···im+1 ∈ L0(U).

Using Theorem 3.4, find almost everywhere differentiable Ai1···im ∈ C(Rn) satisfyig
the following conditions.

(1) osc(Ai1···im
) < ε/N where N :=

(
n
m

)
, and {Ai1···im

	= 0} ⊂ U .

(2) For almost all x ∈ U and i = 1, . . . , n,

DiAi1···im
(x) =

{
ai i1···im

(x) if i < i1,

0 if i ≥ i1.

(3) if x ∈ R
n − U , then Ai1···im is differentiable at x and DAi1···im(x) = 0.

Now φ :=
∑

i1<···<im
Ai1···im

dξi1 ∧ · · · ∧ dξim
is the desired m-form, since

dφ(x) =
∑

i1<···<im

n∑
i=1

DiAi1···im(x) dξi ∧ dξi1 ∧ · · · ∧ dξim

=
∑

i<i1<···<im

ai i1···im(x)dξi ∧ dξi1 ∧ · · · ∧ dξim = ω(x)

for almost all x ∈ U .

For each nonnegative integer m ≤ n, we denote by Nm,K(U) the linear space of
all m-dimensional normal currents in U supported in a compact set K ⊂ U , and
let Nm(U) :=

⋃
K Nm,K(U) where the union is taken over all compact sets K ⊂ U .

All properties of currents we will use can be found in [4, Section 4.1].
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Let T ∈ Nm(U). There are a compactly supported Radon measure ‖T‖ in U and
a Borel map

−→
T : U → ∧mR

n such that
∣∣−→T (x)

∣∣ = 1 for ‖T‖ almost all x ∈ U and

〈T, φ〉 =
∫

U

〈φ,
−→
T 〉 d‖T‖

for every φ ∈ C(U,∧m
R

n). Denote by ∂T and sptT the boundary and support of T ,
respectively, and let

M(T ) := ‖T‖(U) and N(T ) := M(T ) + M(∂T ).

If K ⊂ U is compact, we define the flat seminorm of T in K as

FK(T ) := inf
{
M(T − ∂S) + M(S) : S ∈ Nm+1,K(U)

}
.

Definition 4.2. A linear functional F : Nm(U) → R is called an m-charge if given
ε > 0 and a compact set K ⊂ U , there is a δ > 0 such that F (T ) < ε for each
T ∈ Nm,K(U) with FK(T ) < δ and N(T ) < 1/ε.

Note. Definition 4.2 was introduced jointly by T. De Pauw and W.F. Pfeffer in
2004 — a private communication on middle dimensional integration. It generalizes
the concepts defined [9, Section 2.1]. For another connection see Remark 4.5 below.

Observation 4.3. A linear functional F : Nm(U) → R is an m-charge if and only
if given ε > 0 and a compact set K ⊂ U , there is a θ > 0 such that

F (T ) ≤ θFK(T ) + εN(T )

for each T ∈ Nm,K(U).

Proof. As the converse is obvious, assume F is an m-charge. Choose a positive
ε ≤ 1 and a compact set K ⊂ U . There is a δ > 0 such that F (S) ≤ ε for each
S ∈ Nm,K(U) with FK(S) ≤ δ and N(S) ≤ 1/ε. Let θ := ε/δ, and select a
T ∈ Nm,K(U) with N(T ) = 1. As N(T ) ≤ 1/ε, we have F (T ) ≤ εN(T ) whenever
FK(T ) ≤ δ. If FK(T ) > δ, let S :=

[
δ/FK(T )

]
T and observe that F (S) ≤ ε; since

FK(S) = δ and N(S) = δ/FK(T ) ≤ 1/ε. Thus F (T ) ≤ (ε/δ)FK(T ), and

F (T ) ≤ θFK(T ) + εN(T )

in either case. As the last inequality is homogenous, the observation follows.

The oscillation of an m-charge F , denoted by osc(F ), is the infimum of all ε > 0
such that F (T ) < ε for each T ∈ Nm(U) with N(T ) < 1/ε.

Proposition 4.4. If ω ∈ C(U ;∧m−1
R

n), then

Fω : T �→ 〈∂T, ω〉 : Nm(U) → R

is an m-charge, and osc(Fω) ≤
√

osc(ω).

Proof. Choose an ε > 0 and a compact set K ⊂ U . Find a φ ∈ C∞
c (U ;∧m−1

R
n)

such that
∣∣ω(x)−φ(x)

∣∣ < ε2/2 for each x ∈ K, and let δ := ε/(2c) where c is larger
than

∣∣dφ(x)
∣∣ for each x ∈ U . Now let T ∈ Nm,K(U) be such that N(T ) < 1/ε and

FK(T ) < δ, and select an S ∈ Nm+1,K(U) with



LUZIN’S THEOREM 9

M(T − ∂S) ≤ M(T − ∂S) + M(S) < δ.

Since spt ∂T ⊂ K, we obtain

Fω(T ) = 〈∂T, ω − φ〉 +
〈
∂(T − ∂S), φ

〉
=

∫
K

〈
ω − φ,

−→
∂T

〉
d‖∂T‖ + 〈T − ∂S, dφ〉

≤ ε2

2
N(T ) + sup

{∣∣dφ(x)
∣∣ : x ∈ U

}
M(T − ∂S) <

ε

2
+ cδ = ε.

As the linearity of Fω is obvious, Fω is a m-charge. Assume osc(ω) > 0, and choose
an x ∈ U and a T ∈ Nm(U) with N(T ) < 1/

√
osc(ω). Then

Fω(T ) =
〈
∂T, ω − ω(x)

〉
=

∫
U

〈
ω(y) − ω(x),

−→
∂T

〉
d‖∂T‖(y)

≤
∫

U

∣∣ω(y) − ω(x)
∣∣d‖∂T‖(y) ≤ osc(ω)N(T ) <

√
osc(ω)

and we conclude that osc(Fω) ≤
√

osc(ω).

The charge Fω defined in Proposition 4.4 is called the flux of ω.

Remark 4.5. Note that ω ∈ C(U ;∧m−1
R

n) can be thought of as a weak solution of
the equation dω = Fω. This assertion is more transparent when m = n. Identifying
C(U ;∧n

R
n) and C(U ;∧n−1

R
n) with C(U) and C(U ; Rn), respectively, n-charges

are distributions, called strong charges in [2]. Proposition 4.6 and Theorem 4.7
below, proved in [2, Proposition 2.9 and Theorem 4.7], indicate their usefulness.

Proposition 4.6. Each f ∈ Ln
loc(U) defines an n-charge by the formula

F (ϕ) =
∫

U

f(x)ϕ(x)dx

for each test function ϕ ∈ C∞
c (U).

Theorem 4.7. Let F : C∞
c (U) → R be a distribution. The equation div v = F has

a distributional solution v ∈ C(U ; Rn) if and only if F is an n-charge.

If (T, x) ∈ Nm(U) × U , we let diam (T, x) := d
(
{x} ∪ sptT

)
and

reg (T, x) :=

{ M(T )

M(∂T )diam (T,x)
if T 	= 0 and ∂T 	= 0,

0 otherwise.

We say that a sequence {Ti} in Nm(U) tends to (x, ξ) ∈ U × G0(n, m) if the
following conditions are satisfied

(1) lim diam (Ti, x) = 0 and inf reg (Ti, x) > 0,

(2) lim 1
M(Ti)

∫
U

∣∣−→Ti (y) − ξ
∣∣d‖Ti‖(y) = 0.

An m-charge F is derivable at (x, ξ) ∈ U × G0(n, m) if a limit

lim
F (Ti)
M(Ti)

	= ±∞

exists for each sequence {Ti} in Nm(U) that tends to (x, ξ); in which case all these
limits have a common value called the derivative of F at (x, ξ), denoted by DF (x, ξ).
Since the set of sequences {Ti} which tend to (x, ξ) is nonempty, the meaning of
DF (x, ξ) is unambiguous.
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Note. For m = n, the derivation base defined above was used in [6, 8]. A very
general Gauss-Green theorem has been obtained in [9] by employing a derivation
base consisting of bounded BV sets, i.e, a very specialized n-dimensional normal
currents, satisfying the above regularity condition. More details about this top-
dimensional derivation base are given in the last paragraph of this section.

Proposition 4.8. If ω ∈ C(U ;∧m−1
R

n) is differentiable at x ∈ U , then the flux
Fω of ω is derivable at (x, ξ) for each ξ ∈ G0(n, m) and

DFω(x, ξ) =
〈
dω(x), ξ

〉
.

Proof. Let ξ ∈ G0(n, m), and let {Ti} be a sequence in Nm(U) which tends to (x, ξ).
Choose ε > 0, and let η := inf reg (Ti, x). There are a linear map λ : R

n → ∧m−1
R

n

and a δ > 0 such that ∣∣ω(y) − ω(x) − λ(y − x)
∣∣ ≤ εη|y − x|

for y ∈ U ∩ B(x, δ). If φ(y) := ω(x) + λ(y − x) for each y ∈ R
n, then it is easy

to see that dφ is a constant m-form equal to dω(x). Passing to a subsequence, we
may assume that for i = 1, 2, . . . ,

spt Ti ⊂ B(x, δ) and
∫

U

∣∣−→Ti (y) − ξ
∣∣ d‖Ti‖(y) < εM(Ti).

In the inequality∣∣∣Fω(Ti) −
〈
dω(x), ξ

〉
M(Ti)

∣∣∣ ≤∣∣〈∂Ti, ω − φ〉
∣∣+∣∣∣〈∂Ti, φ〉 −

〈
dω(x), ξ

〉
M(Ti)

∣∣∣ = A1 + A2

we estimate separately the terms A1 and A2:

A1 ≤
∫

U

∣∣ω(y) − φ(y)
∣∣ d‖∂Ti‖(y) ≤ εη

∫
sptTi

|y − x| d‖∂Ti‖(y)

≤ ε η diam (Ti, x)M(∂Ti) < εM(Ti),

A2 =
∣∣∣∣〈Ti, dφ〉 −

∫
U

〈
dω(x), ξ〉 d‖Ti‖(y)

∣∣∣∣ ≤ ∫
U

∣∣〈dω(x),
−→
Ti (y) − ξ〉

∣∣ d‖Ti‖(y)

≤
∣∣dω(x)

∣∣ ∫
U

∣∣−→Ti (y) − ξ
∣∣ d‖Ti‖(y) < ε

∣∣dω(x)
∣∣M(Ti).

The switch 〈∂Ti, φ〉 = 〈Ti, dφ〉 in the estimate of A2 is possible, since there is a
ψ ∈ C∞

c (U ;∧m−1
R

n) with ψ(y) = φ(y) for each y ∈ B(x, δ). Combining the last
three inequalities, we obtain∣∣∣〈dω(x), ξ

〉
M(Ti) − Fω(Ti)

∣∣∣ < ε
(
1 +

∣∣dω(x)
∣∣)M(Ti)

and the proposition follows.

Theorem 4.9. Let ω ∈ L0(U,∧m+1
R

m) where 0 ≤ m ≤ n− 1. Given ε > 0, there
is an almost everywhere derivable (m+1)-charge F : Nm+1(Rn) → R satisfying the
following conditions.

(1) osc(F ) < ε and F (T ) = 0 whenever U ∩ sptT = ∅.
(2) DF (x, ξ) =

〈
ω(x), ξ

〉
for almost all x ∈ U and each ξ ∈ G0(n, m + 1).

(3) If x ∈ R
n − U , then DF (x, ξ) = 0 for each ξ ∈ G0(n, m + 1).
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Proof. Let φ ∈ C(Rn;∧m
R

n) be associated with ω and ε2 according to Proposi-
tion 4.1. In view of Propositions 4.4 and 4.8, it suffices to let F := Fφ be the flux
of φ.

Let BVc(U) be the collection of all BV sets [3, Chapter 5] whose closures are
compact subsets of U , and denote by ‖B‖ the perimeter of B ∈ BVc . In accordance
with [4, Section 4.5], view BVc(U) as a subspace of Nn(U), and observe that

reg (B, x) =

{ |B|
d(B∪{x})‖B‖ if |B| > 0,

0 if |B| = 0,

for each (B, x) ∈ BVc × U . For every B ∈ BVc, the n-vector
−→
B equals to a fixed

ξ0 ∈ G0(n, n), which orients R
n. It follows that a sequence {Bi} in BVc tends to

(x, ξ) ∈ U × G0(n, n) whenever ξ = ξ0, and

lim d
(
Bi ∪ {x}

)
= 0 and inf reg (Bi, x) > 0. (4.1)

Thus if F is an n-charge derivable at (x, ξ0), then

lim
F (Bi)
|Bi|

= DF (x, ξ0)

for each sequence {Bi} in BVc satisfying conditions (4.1). From this it follows that
Theorem 4.9 generalizes the main result of [5].
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