

Vivian Genaro Motti
Louvain School of Management

Dave Raggett,
W3C/ERCIM

WORKING
PAPER
2013/14

Quill: a collaborative design
assistant for cross platform web
application user interfaces

LOUVAIN SCHOOL OF MANAGEMENT RESEARCH INSTITUTE

Quill: a collaborative design assistant for cross platfom web
application user interfaces
Vivian Genaro Motti, Louvain School of Management
Dave Raggett, W3C/ERCIM

Summary

Web application development teams face an increasing burden when they need to come up with a
consistent user interface across different platforms with different characteristics, for example, desktop,
smart phone and tablet devices. This is going to get even worse with the adoption of HTML5 on TVs
and cars. This short paper describes a browser-based collaborative design assistant that does the drudge
work of ensuring that the user interfaces are kept in sync across all of the target platforms and with
changes to the domain data and task models. This is based upon an expert system that dynamically
updates the user interface design to reflect the developer’s decisions. This is implemented in terms of
constraint propagation and search through the design space. An additional benefit is the ease of
providing accessible user interfaces in conjunction with assistive technologies.

Keywords : model-based user interface design; collaborative assistant.

ACM Classification: D.2 SOFTWARE ENGINEERING D2.2 Design Tools and Techniques: User
interfaces.

This work was supported by funding for the Serenoa Project from the European Commission’s Seventh
Framework Program under grant agreement number 258030 (FP7- ICT-2009-5).

Louvain School of Management
Working Paper Series
Editor : Prof. Jean Vanderdonckt
(president-ilsm@uclouvain.be)

Corresponding author :
Vivian Genaro Motti
Louvain Interaction Laboratory
Louvain School of Management
Université catholique de Louvain
Place des Doyens 1
B-1348 Louvain-la-Neuve, BELGIUM
Email: vivian.genaromotti@uclouvain.be

The papers in the WP series have undergone only limited review and may be updated, corrected or withdrawn without changing
numbering. Please contact the corresponding author directly for any comments or questions regarding the paper.
President-ilsm@uclouvain.be, ILSM, UCL, 1 Place des Doyens, B-1348 Louvain-la-Neuve, BELGIUM
www.uclouvain.be/ilsm and www.uclouvain.be/lsm_WP

Quill: A Collaborative Design Assistant for Cross Platform
Web Application User Interfaces

Vivian Genaro Motti
Université catholique de Louvain

Louvain-la-Neuve - Belgium
Place des Doyens 1, 1348

vivian.genaromotti@uclouvain.be

Dave Raggett
W3C/ERCIM

2004, route des Lucioles
Sophia Antipolis - France

dsr@w3.org

ABSTRACT
Web application development teams face an increasing bur-
den when they need to come up with a consistent user inter-
face across different platforms with different characteristics,
for example, desktop, smart phone and tablet devices. This
is going to get even worse with the adoption of HTML5 on
TVs and cars. This short paper describes a browser-based
collaborative design assistant that does the drudge work of
ensuring that the user interfaces are kept in sync across all
of the target platforms and with changes to the domain data
and task models. This is based upon an expert system
that dynamically updates the user interface design to re-
flect the developer’s decisions. This is implemented in terms
of constraint propagation and search through the design
space. An additional benefit is the ease of providing accessi-
ble user interfaces in conjunction with assistive technologies.

Categories and Subject Descriptors: D.2 SOFTWARE
ENGINEERING D2.2 Design Tools and Techniques: User
interfaces Keywords: model-based user interface design;
collaborative assistant

1. INTRODUCTION
People increasingly access the Web from a wide range of

devices with different characteristics. Desktop devices such
as laptop computers have large high resolution displays, key-
boards and a pointer control. User interaction is based upon
windows, icons, menus and pointers (WIMP). By contrast
smart phones have much smaller touch-sensitive displays.
User interaction is driven by touch gestures, and controls
need to be large enough for easy operation by the user’s fin-
gers. Tablets are similar to smart phones, but with a larger
display that allows for richer user interfaces. User inter-
action with applications running on connected TVs is via
a hand held remote, or through a coupled smart phone or
tablet. Cars are emerging as the next new area for web tech-
nologies, and look likely to boost adoption of multimodal
interaction as a response to the need for driver safety. Ap-
plications can run in the car’s head-unit, or on a connected
smart phone.

Application development teams are thus confronted with
an increasing range of platforms and interaction metaphors.
Businesses will want to provide access to their services across
this range. This is putting pressure on developers to ensure

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

a consistent user interface across all of the target platforms
whilst containing the development cost and time budget.
One approach to this has been the use of high level device
independent user interface descriptions that are compiled for
each target platform. This approach restricts the ability of
developers to directly influence the user interface for each
platform. The rest of this paper describes a new approach
where the computer acts as a design assistant that collabo-
rates with the developer to maintain consistency of the user
interface across platforms as changes are made. For a survey
of model-based user interface design practices, see [7].

In many cases, when starting on a new project, the first
step is to establish the business requirements. A systems
expert can then translate these requirements into definitions
for the data interfaces and the user interaction tasks. A
user interface expert can use these to work on developing
the corresponding user interface. A mock up in PhotoShop
may be used for initial review, but it is much better to have
working prototypes on each of the target platforms. Existing
user interface prototyping tools such as [2] faciliate creation
of mockup/wireframe prototypes along with a means to skin
the style. Such approaches focus on the concrete look and
feel of a user interface, but don’t assist with synchronizing
the design across multiple target platforms.

In Quill, the user interface design is held as layered ab-
stractions following the Cameleon Reference Framework [3].
The top most layer contains the domain interfaces and in-
teraction task models. This is followed by models describing
abstract user interface in a manner that is essentially inde-
pendent of the target platforms and modes of interaction.
Below this is the concrete user interface, which involves a
commitment to particular modes of interaction on broad
categories of devices. The bottom most layer is the final
user interface on each of the target devices. This is gen-
erated from the concrete user interface where the detailed
styling is determined by a theme or skin provided by the de-
sign team. Further information and example languages can
be found in [5]

Quill embodies an expert system that generates the ab-
stract and concrete user interfaces from the task and domain
model. The human designers adjust this design, and Quill
then propagates the implications of these changes to search
for a consistent overall design for all of the target platforms.
In essence, Quill frees designers to make changes without
having to do the tedious and error prone work of synchroniz-
ing these across the entire project. In principle, Quill could
be integrated as part of Web content management systems.

2. DESIGN KNOWLEDGE
The following sections introduce the conceptual structure

and algorithms used to realize the design assistant. This is
followed by a brief introduction to the authoring user inter-
face and ideas for further work.

2.1 Rich Domain Model
This defines the data interfaces between the user inter-

face and the application back-end. In addition to basic data
types, Quill supports default values, examples, constraints
and embedded documentation. Constraints include regular
expressions that constrain the value of string properties; ex-
pressions indicating that a given interface, method or prop-
erty is relevant based upon the values of other properties;
whether a particular property is optional or must be pro-
vided by the user; and whether a particular property or
interface is persistent, in the sense that the values provided
by a user are preserved in between invocations of the user
interface.

2.2 Task Models as Basis for Dialog Design
Task models describe user interaction at an abstract level,

e.g. which tasks can be carried out concurrently, which tasks
pass information enabling other tasks, and which tasks rep-
resent a choice in the sense that one of a given set of tasks
must be performed. Some tasks are performed by the user
whilst others are performed by the system. The task model
can be used to determine what parts of the user interface to
present in parallel and what parts must be presented sequen-
tially. On a small display, it may be appropriate to break
the user interface into a sequence of simple dialogs, while on
a larger display, these could be presented together, or split
across separate panes in a tab control. Tasks can be anno-
tated to indicate whether they are common or rare. The
latter may be handled as part of an advanced user dialog.
For a diagrammatic notation for task models, see [9].

2.3 Layout Expertise
Layout expertise is needed to generate candidate designs

for the concrete user interface. This involves platform spe-
cific knowledge, e.g. the difference for touch based controls
on a smart phone from those driven by a mouse pointer
on a laptop. The design is influenced by rough estimates
of the size of each control, based upon information in the
domain model, including examples of expected user input.
Quill deliberately uses a simple model of layout, e.g. verti-
cal, horizontal and grid1 layout managers. This is enriched
and mapped into CSS when skinning the final user interface
generated from the concrete user interface models.

2.4 Design Rules
The design knowledge for the design assistant is expressed

as rules. These fall into three categories:

• Rules that propose designs, and which embody design
preferences for particular platforms.

• Rules that determine which relationships hold in a
given context of use. These rules typically apply across
different levels of abstraction.

1For a proposal for extending CSS to support rich grid lay-
outs, see [8]

• Rules that critique designs, for example, looking for
color contrasts that would create problems for people
who have one of several forms of color blindness.

2.5 Abduction and Constraint Satisfaction
One approach to propagating the effects of changes across

a design is to use event-condition-action rules. When the
event occurs the action is triggered if the associated condi-
tion hold true. This approach requires every change to be
matched with a rule, resulting in the need for large numbers
of rules, that then become hard to maintain. A contrasting
approach is to express logical relationships across different
levels of abstraction. If you know certain facts and also that
certain relationships hold true, then it is possible to infer
additional facts that must be true if the relationship is to
hold. This is generally referred to as abductive reasoning.
For simple conjunctive relationships, this can be cast as an
extension of relational table joins, using logical variables for
values shared across tables. A proof of concept was pre-
pared as an interactive web page [12]. This makes use of
a two pass algorithm for performing the logical joins and
abducing facts. The demo allows you to enable and disable
abduction to see the effects on the results.

Abduction can also be considered as constraint satisfac-
tion. The design space can be exhaustively scanned to find
solutions that fulfil the constraints. This can be time con-
suming depending on the size of the space. If no such solu-
tion is found, an explanation can be generated to guide the
user (the designer) as to why. The demo cited in the previ-
ous paragraph uses an exhaustive search which in the worst
case is the cross product of the number of records (facts)
for all of the tables in the relationship. If the relationship
shares variables across the tables in the relationship, the
search space diminishes in size. Each table prunes the size
of the search space for the next table to consider. This is
an example of constraint propagation which can be used to
reduce the size of the search space, but in most cases, you
will still have some search left to carry out. A refinement is
to use dependency directed backtracking for this search, as
this provides a natural basis to generate explanations [10].
A survey of algorithms for constraint satisfaction problems
can be found in [6].

3. AUTHORING USER INTERFACE
Quill is being developed as a browser based authoring tool,

where the models are held on a web server, and targeting
devices that support HTML5, such as desktop computers,
smart phones, tablets and connected TVs. A direct ma-
nipulation interface is being explored for the task, abstract
and concrete user interface models, along with a tabbed
metaphor for switching between the different levels of the
Cameleon Reference Framework. Figure 1 is a screenshot
showing selection of target platforms for the current project.

The concrete UI (Figure 2) supports a palette of com-
ponents that are dragged onto the canvas. The task and
abstract UI (Figure 3) are rendered graphically using au-
tomatic force directed layout that treats each node as a
charged particle and each link as spring. The layout pro-
cess occurs dynamically using animation of the HTML5 2D
Canvas. The domain model is realized as a syntax colored
text editor based upon CodeMirror [4]. A concise text for-
mat is used for loading and saving models to the server.

Figure 1: Quill: Target Platform Selection

Figure 2: Quill: Concrete UI

Further work is planned to allow for live review of edits
by distributed teams of developers. This will be based upon
a system where one of the browsers in the editing session is
dynamically selected to be the primary editor with the role
of automatically reviewing edits proposed by other browsers
in near real-time. This involves a 3-way merge based upon
analysing changes since a common ancestor version of the
model. Proposed changes with respect to that version are
mapped to the latest version of the model by propagating
them through the effects of accepted changes. The local
undo/redo stack for each client operates on changes made by
just that client’s user and is adjusted to reflect the changes
accepted by the primary editor. The algorithms involved
operate on hierarchical descriptions of models and sequences
of model mutations, and have been tested in an experimental
markup editor.

4. NEXT STEPS
Quill is still a work in progress, and will be released as an

open source project under the Apache2 license. The idea of
a collaborative design assistant based upon constraint satis-
faction is still relatively new, and further work is needed to
realize the full potential as a means to reduce the cost and
time for developing consistent user interfaces across multiple
platforms. Of particular interest are the challenges raised by
multiscreen applications, e.g. using a smart phone together
with a connected TV, or for multimodal applications in cars,
where hands free operation is essential. For the relationship
to responsive design, see [11].

Figure 3: Quill: Abstract UI

5. ACKNOWLEDGEMENTS
This work was supported by funding for the Serenoa

Project [1] from the European Commission’s Seventh Frame-
work Program under grant agreement number 258030 (FP7-
ICT-2009-5).

6. REFERENCES

[1] SERENOA Project. 2012. http://www.serenoa-fp7.eu/.
[2] EaSynth Solution Inc. Ltd. Foreui. 2012.

http://www.foreui.com/.
[3] G. Calvary et al. The cameleon reference framework,

cameleon project. 2002.
http://giove.isti.cnr.it/projects/cameleon/pdf/

CAMELEON20D1.1RefFramework.pdf.
[4] M. Haverbeke. Codemirror – a code editor in the browser.

2013. http://codemirror.net/.
[5] José M. C. Fonseca et al. W3C Model-Based UI Incubator

Group Final Report. 2010. http://www.w3.org/2005/
Incubator/model-based-ui/XGR-mbui-20100504/.

[6] V. Kumar. Algorithms for constraint satisfaction problems.
AI Magazine, 1992. http://www.cs.cinvestav.mx/
~constraint/papers/kumar-survey.pdf.

[7] G. Meixner, F. Paternò, and J. Vanderdonckt. Past,
present, and future of model-based user interface
development. i-com 10(3): 2-11, 2011.
http://giove.isti.cnr.it/attachments/publications/

icom%202011%200026%20-%20model-based.pdf.
[8] A. Mogilevsky, P. Cupp, M. Mielke, and D. Glazman. CSS

Grid Layout. 2012. http:
//www.w3.org/TR/2012/WD-css3-grid-layout-20121106/.

[9] F. Paternò, C. Mancini, and S. Meniconi. ConcurTaskTrees:
A Diagrammatic Notation for Specifying Task Models.
INTERACT ’97 Proceedings of the IFIP TC13

Interantional Conference on Human-Computer Interaction,

Pages 362-369, 1997.
[10] C. J. Petrie Jr. New algorithms for dependency-directed

backtracking. AI TR86-33, 1986. ftp://ftp.cs.utexas.
edu/pub/AI-Lab/tech-reports/UT-AI-TR-86-33.pdf.

[11] D. Raggett. Responsive Design. 2013.
http://www.w3.org/2013/Talks/responsive-design.pdf.

[12] D. Raggett. Testbed for abduction over relationships. 2013.
http://www.w3.org/2013/01/abduction/.

