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Abstract

A rich theory of production and analysis of productive efficiency has developed since
pioneering work by Koopmans (1951) and Debreu (1951). Farrell (1957) is the earliest
published empirical study, and appeared in a statistical journal (JRSS ), even though
Farrell provided no statistical theory. The literature in econometrics, management sci-
ences, operations research and mathematical statistics has since been enriched by hun-
dreds of papers trying to develop or implement new tools for analyzing productivity
and efficiency of firms. Both parametric and nonparametric approaches have been pro-
posed. The mathematical challenge is to derive estimators of production, cost, revenue,
or profit frontiers which represent, in the case of production frontiers, the optimal loci
of combinations of inputs (like labor, energy, capital, etc.) and outputs (the products
or services produced by the firms). Optimality is defined in terms of various economic
considerations. Then the efficiency of a particular unit is measured by its distance to the
estimated frontier. The statistical problem can be viewed as the problem of estimating
the support of a multivariate random variable, subject to some shape constraints, in
multiple dimensions. These techniques are applied in thousands of papers in the eco-
nomic and business literature. This “Guided Tour” reviews the development of various
nonparametric approaches since the early work of Farrell. Remaining challenges and
open issues in this challenging arena are also described.
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Voie du Roman Pays 20, B 1348 Louvain-la-Neuve, Belgium; email leopold.simar@uclouvain.be.

Wilson: Department of Economics and School of Computing, 228 Sirrine Hall, Clemson University, Clem-
son, South Carolina 29634–1309, USA; email pww@clemson.edu.

Research support from the IAP Research Network P7/06 of the Belgian State (Belgian Science Policy) and
from U.S. National Science Foundation (grant no. SMA-1243436) is gratefully acknowledged. Any remaining
errors are solely our responsibility.



Contents

1 Introduction 1

2 The Economic and The Statistical Paradigms 2
2.1 Production theory and efficiency scores . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Returns to scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Statistical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The Nonparametric Envelopment Estimators 6
3.1 Free Disposal Hull (FDH) Estimators . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Data Envelopment Analysis (DEA) Estimators . . . . . . . . . . . . . . . . . . 7

4 Statistical Inference using DEA/FDH Estimators 9
4.1 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Bootstrap techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Robust Versions of Envelopment Estimators 15
5.1 Probabilistic formulation of the production process . . . . . . . . . . . . . . . 15
5.2 Order-m partial frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Order-α quantile frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Further extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Robust estimation of the full frontier . . . . . . . . . . . . . . . . . . . . . . . 19

6 Introducing Environmental Factors 20
6.1 One-stage approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Two-stage approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Conditional frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Other Aspects and Open Issues 25
7.1 Parametric approximations of nonparametric frontier . . . . . . . . . . . . . . 25
7.2 Nonparametric Stochastic Frontier . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 Testing Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Nonparametric models for panel data . . . . . . . . . . . . . . . . . . . . . . . 30

8 Conclusion 32



1 Introduction

Production theory and efficiency analysis examine how firms or production units in a particular

sector of activity transform their inputs (e.g., labor, energy, capital, etc.) into quantities of

outputs, i.e., the goods or services that are produced by the firms. The analysis is not limited

to business firms such as manufacturing concerns, electricity plants, banks, for-profit hospitals,

etc.; it is used to examine schools, universities, provision of public goods and services, non-

profit organizations including hospitals and credit unions, etc. The efficient production frontier

is defined in the relevant input-output space as the locus of the maximal attainable level of

outputs corresponding to given levels of inputs. Alternatively, if prices of inputs are available,

one can consider a cost frontier defined by the minimal cost of producing various levels of

outputs. Intermediate cases are also possible; for example, one might consider maximization

of quantities of a subset of outputs while minimizing quantities of some (perhaps all) inputs,

holding other quantities fixed. In all cases, the problem amounts to estimating a boundary

surface in the relevant space (e.g., the input-output space in the case of a production frontier,

or the output-cost space in terms of a cost frontier) under shape constraints induced by

some economic assumptions (e.g., monotonicity, concavity, etc.). The technical efficiency

of a particular production plan (characterized geometrically by a point in the input-output

space) is then determined by an appropriate measure of distance between this point and the

optimal frontier. The background of the economic theory behind these analysis is due to

Koopmans (1951) and Debreu (1951); see Shephard (1970) for a comprehensive presentation

of the underlying economic theory.

In empirical studies, the attainable set in the input-output space is unobserved, and hence

the efficiency of a given firm is also unknown. These quantities must be estimated from

a sample of observed combinations of input and output quantities obtained from existing

production units operating in the activity sector being studied. Many different approaches

have been investigated in the literature, including statistical models of varying degrees of

sophistication and ranging from fully parametric to fully nonparametric approaches. This

literature has developed in a variety of academic fields, including economics, management

and management science, operations research, econometrics, and statistics; in each case field,

papers ranging from “very theoretical” to “very applied” can be found.

This “Guided Tour” focuses on statistical results obtained in the nonparametric branch of

the literature, while stressing the inherent difficulty of the problem and solutions that have

been developed. The tour begins in Section 2 by defining the basics of an economic model for

production theory. The most popular nonparametric estimators, based on envelopment tech-

niques, are then presented in Section 3. Statistical properties of the estimators and practical
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aspects of inference-making (mostly by bootstrap methods) are discussed in Section 4. Sec-

tion 5 presents various extensions that have been proposed in the literature to address some

of the inherent drawbacks of envelopment estimators (e.g., sensitivity to extreme data points

and outliers). Section 6 shows how environmental factors that may influence the production

process can be included in the analysis, allowing for heterogeneity. Finally, Section 7 briefly

describes additional, interesting issues and challenges that remain open questions, including

(i) how to use nonparametric methods to improve some parametric estimators, (ii) introducing

noise in the observational process; (iii) testing issues; and (iv) nonparametric frontier models

for panel data. The existing, first solutions to these problems are described, but more work

is needed on these issues.

2 The Economic and The Statistical Paradigms

2.1 Production theory and efficiency scores

Following Koopmans (1951) and Debreu (1951), the production process can be described as

follows. Let x ∈ Rp
+ denote a vector of p input quantities and let y ∈ Rq

+, denote a vector of

q output quantities. The production set

Ψ =
{

(x, y) ∈ Rp+q
+ | x can produce y

}
(2.1)

describes the set of physically attainable points (x, y). For efficiency evaluation, the efficient

boundary of Ψ, i.e., the technology, is of interest. This is defined by

Ψ∂ =
{

(x, y) ∈ Ψ | (γ−1x, γy) /∈ Ψ for any γ > 1
}
. (2.2)

Some minimal economic assumptions on Ψ are typically made. Most studies assume that

inputs and outputs are freely (or strongly) disposable, i.e.,

∀ (x, y) ∈ Ψ, and any (x′, y′) such that x′ ≥ x and y′ ≤ y, (x′, y′) ∈ Ψ. (2.3)

This hypothesis assumes that it is always possible (even if not economically sound) to waste

resources and implies monotonicity of the technology. Another mild assumption is that all

production requires use of some positive input quantities (this is called the “no free lunch”

assumption):

(x, y) /∈ Ψ if x = 0 and y ≥ 0, y 6= 0. (2.4)

In addition, it is often assumed that the attainable set Ψ is convex so that if (x1, y1), (x2, y2) ∈
Ψ, then for all α ∈ [0, 1],

(x, y) = α(x1, y1) + (1− α)(x2, y2) ∈ Ψ. (2.5)
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Other economic assumptions on Ψ (e.g., returns to scale) are sometimes made, but at this

stage only those introduced above are needed.

The technical efficiency of a given production plan (x, y) can now be measured along the

lines of Debreu (1951) and Farrell (1957). The input measure of technical efficiency θ(x, y)

is given by the minimal radial contraction of the inputs to project the point (x, y) onto the

efficient frontier Ψ∂:

θ(x, y) = inf {θ | (θx, y) ∈ Ψ} , (2.6)

where for all points (x, y) ∈ Ψ, θ(x, y) ≤ 1. A value of 1 indicates an efficient point lying

on the boundary of Ψ. Similarly, the output-oriented efficiency score λ(x, y) is the maximal

radial expansion of the outputs that projects the points (x, y) onto the efficient frontier, i.e.,

λ(x, y) = sup {λ | (x, λy) ∈ Ψ} . (2.7)

Here, for all points (x, y) ∈ Ψ, λ(x, y) ≥ 1. A value of 1 indicates an efficient point lying on

the boundary of Ψ.

Other distance measures have been proposed in the economic literature, including hyper-

bolic distance

γ(x, y) = sup
{
γ > 0 | (γ−1x, γy) ∈ Ψ

}
(2.8)

due to Färe et al. (1985) (see also Färe and Grosskopf, 2004), where input and output quan-

tities are adjusted simultaneously to reach the boundary along an hyperbolic path. Note

γ(x, y) = 1 iff (x, y) belongs to the efficient boundary Ψ∂. More recently, a lot of interest has

been devoted to directional distances (Chambers et al., 1998; Färe and Grosskopf, 2000) due

to their great flexibility. Here the projection of (x, y) onto the frontier is along a path in a

given direction d = (−dx, dy), where dx ∈ Rp
+ and dy ∈ Rq

+. The flexibility is due to the fact

that some values of the direction vector can be set to zero. Distance from a point (x, y) to Ψ∂

is then measured by

δ(x, y | dx, dy) = sup {δ | (x− δdx, y + δdy) ∈ Ψ} , (2.9)

where for all points (x, y) ∈ Ψ, δ(x, y) ≥ 0. A value of 0 indicates an efficient point lying

on the boundary of Ψ. Note that as special case, the Farrell-Debreu radial distances can be

recovered; e.g. if d = (−x, 0), δ(x, y | dx, dy) = 1 − θ(x, y)−1. Another interesting feature

is that directional distances are additive measures, hence they permit negative values of x

and y (e.g., in finance, an output y may be the return of a fund, which can be, and often

is, negative). Long debates have been discussed in the economic literature on the directions

should be chosen, and many choices are possible (e.g., a common one for all firms, or a specific

direction for each firm); see Färe et al. (2008) for discussion.
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It should be noticed that all these efficiency measures characterize the efficient boundary

by measuring distance from a known, fixed point (x, y) to the unobserved boundary Ψ∂; the

only difference among the measures in (2.6)–(2.9) is in the direction in which distance is

measured.

2.2 Returns to scale

Returns to scale is an important property of the technology Ψ∂, and determines what happens

as the scale of production is increased. Let V(Ψ) denote the convex cone of Ψ, and define

V(Ψ)∂ =
{

(x, y) ∈ V(Ψ) | (γ−1x, γy) /∈ V(Ψ) for any γ > 1
}

(2.10)

analogous to (2.2). If V(Ψ) = Ψ, then V(Ψ)∂ = Ψ∂ and Ψ∂ exhibits globally constant returns

to scale (CRS).

Alternatively, for Ψ convex, if Ψ ⊂ V(Ψ), then the different regions of Ψ∂ may display

locally either constant, increasing, or decreasing returns to scale. In this case, the subset

of Ψ∂ given by
{

(x, y) | (x, y) ∈ P∂ (x, y) ∈ V(Ψ)∂
}

exhibits locally CRS (this subset may

include a single point or perhaps many points). The subset of Ψ∂ given by{
(x, y) | (x, y) ∈ Ψ∂, (αx, αy) ∈ Ψ, (αx, αy) 6∈ Ψ∂ for some α ∈ (1,∞)

}
(2.11)

exhibits locally increasing returns to scale (IRS), while the subset of Ψ∂ given by{
(x, y) | (x, y) ∈ Ψ∂, (αx, αy) ∈ Ψ, (αx, αy) 6∈ Ψ∂ for some α ∈ [0, 1)

}
(2.12)

exhibits locally decreasing returns to scale (DRS). If Ψ∂ has different regions that display IRS,

CRS, and DRS, then Ψ∂ is said to be of varying returns to scale (VRS).

Along the IRS portion of a technology, a small increase in input usage allows a greater-than-

proportionate increase in output quantities produced. By contrast, along the DRS portion of

a technology, a small decrease in input usage requires only a less-than-proportionate decrease

in output quantities. In this sense, absent other considerations, the CRS portion of Ψ∂ is the

optimal part of the technology; i.e., the CRS portion of Ψ∂ corresponds to the most productive

scale of operation (see Banker, 1984 for discussion).

2.3 Statistical modeling

The concepts introduced above are useful in theory, but in practice, the attainable set Ψ and

its boundary Ψ∂ are unknown, as are the efficiency scores. The best an empirical researcher

can hope to do is to estimate these from a random sample of input-output combinations

Xn = {(Xi, Yi)}ni=1. Of course, a well-defined statistical model—a description of the data

4



generating process (DGP)—describing how the random sample is generated is needed before

anything can be estimated.

There are two main streams of thought in the extant literature: (i) so-called determin-

istic frontier models (this wording is unfortunate because nothing is deterministic), and (ii)

stochastic frontier models. In deterministic models, it is assumed that all observations in the

sample belong to the attainable set:

Pr ((X, Y ) ∈ Ψ) = 1. (2.13)

This may be seen as a reasonable assumption, but it implies that no noise (e.g., measurement

error) is admitted in the DGP. In these models, distance to the frontier is interpreted as

pure inefficiency. Alternatively, stochastic frontier models permit noise in the DGP, so some

observations may lie outside Ψ. This is appealing for its flexibility, but the result is that

distance to the frontier has two components, noise and inefficiency, and hence identification

becomes problematic, requiring additional assumptions that may reduce flexibility.

Another classification of the approaches concerns the chosen level of modeling: either para-

metric models or nonparametric models may be used. Parametric models are rather restrictive

since they rely on particular functional form both for the frontier and for the two elements of

the stochastic parts of the model (i.e. the distribution of the inefficiency and, for stochastic

frontier models, the distribution of the noise). Basic references for parametric, deterministic

models include Aigner and Chu (1968) and Greene (1980); for parametric, stochastic models,

see Aigner et al. (1977), Battese and Corra (1977), Meeusen and van den Broeck (1977), Olson

et al. (1980), and Jondrow et al. (1982).

To illustrate, consider the case of one output Y and a vector of inputs X. One of the

simplest specification for the production frontier function may be

Yi = β0 + β′Xi + Vi − Ui, (2.14)

where Vi ∼ N(0, σ2
V ) is random noise and Ui ∼ N+(0, σ2

U) represents inefficiency (Ui ≥ 0; in

a deterministic model, Vi would not appear), with Vi ⊥⊥ Ui ∀ i = 1, . . . , n. If the variables

are in the log scale, (2.14) gives the familiar Cobb-Douglas production function. Clearly, this

model rests on some very specific hypotheses. Maximum likelihood or modified ordinary least

squares (OLS) can be used to estimate the parameters, but inefficiency Ui is not identified.

Once parameters have been estimated, only the convoluted residual ε̂i = Yi − β̂0 + β̂′Xi

is observed, presenting a deconvolution problem to estimate the inefficiency and the noise

parts of ε̂i. Jondrow et al. (1982) suggest estimating individual efficiency by an estimate of

E(Ui | ε̂i). Various numerical problems arise in the estimation of these models, and inference

about inefficiency presents additional problems. Simar and Wilson (2010) suggest bootstrap
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and bagging methods for making inference on the parameters and on the individual efficiencies

in such models.

The parametric routes in this Guided Tour are not pursued; the interested reader can refer

to Kumbhakar and Lovell (2000) and Greene (2008). Hereafter the focus is on nonparametric

frontier models, which share the very attractive property of relying only on mild assumptions

suggested by economic theory, such as those in (2.3), (2.4), and in some cases in (2.5). In ad-

dition, except for some mild regularity conditions, no parametric restrictions will be imposed

on the distribution of (X, Y ) on Ψ. To date, mainly deterministic frontier models have been

developed in these nonparametric approaches, because the identification problem that arises

when noise is added becomes much more difficult to handle in a nonparametric framework.

Later sections will describe how nonparametric deterministic models can be modified to intro-

duce some noise, and to be resistant to outliers or extreme data points. In addition, Section

7.2 briefly discusses some new lines of research aimed at allowing for noise in nonparametric

frontier models.

3 The Nonparametric Envelopment Estimators

Historically, Farrell (1957) is the pioneering, first empirical work to estimate an attainable

set enveloping the cloud of data points and the resulting efficiency scores. This has been

popularized by by Charnes et al. (1978) and Banker et al. (1984) using linear programming

techniques. These works rely on the convexity assumption (2.5) for Ψ and various returns-to-

scale assumptions. Estimates without imposing convexity on Ψ came later in Afriat (1972)

and Deprins et al. (1984). For simplification, the presentation below starts with the latter. For

many years, estimators of efficiency revolved around the Farrell-Debreu radial measures. As

seen below, these have more recently been extended to hyperbolic and directional distances.

Introductory textbooks on these topics include Thanassoulis (2001) and Cooper et al. (2011).

Fried et al. (2008) present a more advanced, comprehensive picture of the topic, including

parametric approaches.

3.1 Free Disposal Hull (FDH) Estimators

The FDH estimator, relying only on the free disposal assumption (2.3), was proposed by

Deprins et al. (1984). The FDH estimator of Deprins et al. (1984) is able to handle full multi-

variate inputs and outputs and can be used to estimate distances functions in any direction.1

1 Afriat (1972) used similar ideas earlier to define a left-continuous monotone production function, but
only for the case of univariate output and freely disposable inputs. In addition, his approach only allowed
efficiency to be measured in the output direction.
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The idea is very simple; an estimator

Ψ̂FDH(Xn) =
{

(x, y) ∈ Rp+q
+ | y ≤ Yi, x ≥ Xi, (Xi, Yi) ∈ Xn

}
. (3.1)

of Ψ is defined by considering the union of all the orthants (positive in x and negative in y)

having their vertex at the observed data points. FDH estimators of efficiency are obtained

by plugging the estimator (3.1) into the definitions (2.6)–(2.9). For example, in the case of a

particular production plan (x, y), substituting Ψ̂FDH(Xn) for Ψ in (2.6) yields

θ̂FDH(x, y) = inf
{
θ | (θx, y) ∈ Ψ̂FDH(Xn)

}
. (3.2)

Estimators λ̂FDH(x, y), γ̂FDH(x, y), and δ̂FDH(x, y) are obtained by similar substitutions. Note

that the notation Ψ̂FDH(Xn) in (3.1) makes clear that this estimator depends on the random

sample Xn.

FDH estimators are fast and easy to compute using only sorting algorithms. A point

(x̃, ỹ) ∈ Ψ is said to dominate another point (x, y) ∈ Ψ if x̃ ≤ x and ỹ ≥ y. Let Dx,y denote the

set indices of points in Xn dominating (x, y), i.e., Dx,y = {i | (Xi, Yi) ∈ Xn, Xi ≤ x, Yi ≥ y}.
Then

θ̂(x, y) = min
i∈Dx,y

max
j=1,...,p

(
Xj
i

xj

)
, (3.3)

where for a vector a, aj denotes its j-th component. The estimator λ̂FDH(x, y) is computed

similarly; see Simar and Wilson (2013) for details. Wilson (2011) gives an algorithm for

computing γ̂FDH(x, y), and Simar and Vanhems (2012) provide a simple way for computing

δ̂FDH(x, y | dx, dy) when all elements of the direction vectors are strictly positive; if this is not

the case, algorithms given by Daraio and Simar (2013) can be used.

Jeong and Simar (2006) propose a Linearized version of the FDH estimator (LFDH), de-

noted by Ψ̂LFDH(Xn), to avoid the unpleasant step-function nature of the FDH estimator.

The neighboring vertices of the FDH solution are interpolated by an hyperplane, so that

Ψ̂FDH(Xn) ⊆ Ψ̂LFDH(Xn). The vertices to be interpolated are identified using Delaunay trian-

gulation methods (or tessellation; e.g., see Brown, 1979), then linear programming methods

identify the supporting hyperplane. Asymptotic properties of the LFDH estimators are the

same as those of the FDH estimators described below.

3.2 Data Envelopment Analysis (DEA) Estimators

The DEA estimator introduced by Farrell (1957) and popularized by Charnes et al. (1978) is

based on the additional assumption that Ψ is convex and allows for VRS. Farrell’s estimator
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of Ψ is the convex hull of the FDH estimator Ψ̂FDH(Xn) given by

Ψ̂VRS(Xn) =

{
(x, y) ∈ Rp+q

+ | y ≤
n∑
i=1

γiYi, x ≥
n∑
i=1

γiXi,

n∑
i=1

γi = 1, γi ≥ 0 ∀ i = 1, . . . , n

}
.

(3.4)

The multipliers γi and the constraint
∑n

i=1 γi = 1 serve to “convexify” the free disposal hull

of the sample observations (Xi, Yi).

VRS-DEA estimators of the efficiency measures defined in (2.6)–(2.9) are obtained by

substituting Ψ̂V RS(Xn) for Ψ in the definitions; in the case of the input-oriented measure

θ(x, y), the resulting VRS-DEA estimator is given by the linear program

θ̂VRS(x, y) = min
θ

γ1, ..., γn

{
θ | y ≤

n∑
i=1

γiYi, θx ≥
n∑
i=1

γiXi,

n∑
i=1

γi = 1, γi ≥ 0 ∀ i = 1, . . . , n

}
.

(3.5)

The VRS-DEA estimator of λ(x, y) is given by the linear program

λ̂VRS(x, y) = max
λ

γ1, ..., γn

{
λ | λy ≤

n∑
i=1

γiYi, x ≥
n∑
i=1

γiXi,
n∑
i=1

γi = 1, γi ≥ 0 ∀ i = 1, . . . , n

}
.

(3.6)

The VRS-DEA estimator δ̂VRS(x, y | dx, dy) of δ(x, y | dx, dy) can also be computed as the

solution to a linear program; see Simar et al. (2012) for details. Wilson (2011) gives a numerical

algorithm for computing the hyperbolic estimator γ̂VRS(x, y), which cannot be written as a

linear program.

If Ψ∂ is globally CRS, then Ψ can be estimated by the convex cone of Ψ̂FDH(X ) obtained by

dropping the constraint
∑n

i=1 γi = 1 in (3.4); denote this estimator by Ψ̂CRS(X ). Substituting

Ψ̂CRS(X ) for Ψ in (2.6)–(2.9) yields CRS-DEA estimators of the efficiency measures defined

there. Computation of the corresponding CRS-DEA estimators is similar to computation

of their VRS-DEA counterparts; the input- and output-oriented estimators θ̂CRS(x, y) and

λ̂CRS(x, y) are computed by dropping the constraint
∑n

i=1 γi = 1 in (3.5)–(3.6). The CRS-

DEA directional estimator δ̂CRS(x, y | dx, dy) is computed by dropping the same constraint

from the linear program that appears in Simar et al. (2012), an the algorithm appearing in

Wilson (2011) is easily modified to compute the hyperbolic estimator γ̂CRS(x, y).

The various DEA estimators that have been discussed can be adapted to handle cases

where Ψ∂ exhibits either increasing and constant, but not decreasing returns to scale, or

constant and decreasing, but not increasing returns to scale. Details are given in Simar and

Wilson (2002, 2013) and Banker et al. (2004). For purposes of this review, only the VRS-DEA

and CRS-DEA estimators are needed.

Software for computing the nonparametric estimators—both FDH and DEA—is available
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in the FEAR library described by Wilson (2008) for use with R. The software is freely available

for academic use as described in the license that accompanies FEAR.

4 Statistical Inference using DEA/FDH Estimators

The nonparametric envelopment estimators described above in Section 3 have been used in

several thousands of papers without acknowledging the fact that the resulting DEA/FDH

efficiency scores computed in these papers are in fact estimators.2 For a given sample Xn,

the various FDH and DEA efficiency estimators discussed above provide only point estimates

of unknown quantities. It seems that until recently, most researchers using these estimators

were unaware, and unconcerned, by the statistical properties of these estimators.

Until recently, much of the DEA/FDH literature was concentrated in the field of Operations

Research; DEA/FDH techniques were considered as non-statistical or non-econometric by

those working in Statistics or Econometrics, who focused primarily on parametric approaches

to efficiency analysis. By now, however, this has changed; the “two worlds” have been largely

unified by recent theoretical results. After the original empirical work of Farrell (1957), Afriat

(1972) and Deprins et al. (1984), Banker (1993), Korostelev et al. (1995a, 1995b) and Simar

(1992, 1996) were the first to consider the FDH/DEA procedures from a statistical viewpoint

(including presentation of a well-defined statistical model). This section summarizes most of

the results available today. To streamline the discussion, only results for the radial, input-

oriented Farrell-Debreu efficiency measures are presented. These results extend trivially to

the output-orientation with some (perhaps tedious) changes in notation. Extension to the

hyperbolic and directional measures is given by Wilson (2011), Simar and Vanhems (2012),

and Simar et al. (2012). A comprehensive and informative survey covering all these cases can

be found in Simar and Wilson (2013).

4.1 Asymptotic properties

As noted earlier, the notation introduced in Section 3 makes clear that Ψ̂FDH(Xn) and

Ψ̂DEA(Xn) are function of the random sample Xn. Consequently, all of the efficiency esti-

mators discussed so far necessarily measure efficient relative to the boundary of an estimate

of the attainable set.

2 Seiford (1996) provides a survey of more than 700 published papers using DEA/FDH techniques; Cooper
et al. (2000) similarly cite roughly 1,500 references; and Gattoufi et al. (2004) provide more than 1,800
references. A search on Google Scholar using the keywords ”efficiency,” ”production,” and either ”dea” or
”fdh” yielded about 102,000 papers (many are unpublished working papers) on 1 November 2013. Almost all
of these papers ignore any statistical considerations.
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Consistency

The first results concern minimal, but essential properties: statistical consistency and achieved

rates of convergence. For a long time, the only available results were for cases where where

either inputs or outputs were unidimensional. For p = 1 and q ≥ 1, Banker (1993) establishes

consistency of θ̂DEA(x, y) for convex sets Ψ, but provides no information on the rate of con-

vergence. The first systematic analysis of convergence of envelopment estimators appears in

Korostelev et al. (1995a, 1995b).3

For the case p = 1 and q ≥ 1, Korostelev et al. (1995a) prove that under the free dis-

posability assumption, and the hypothesis that the joint density of (X, Y ) on Ψ is uniform,

the FDH estimator of Ψ is the maximum likelihood estimator, is consistent, and achieves the

optimal rate

dH(Ψ̂FDH(Xn),Ψ) = Op

(
(n/ log n)−1/(1+q)

)
, (4.1)

where dH(·, ·) denotes the Hausdorff metric between the two sets. Korostelev et al. also

describe a “blown-up” version of the FDH estimator reaching asymptotically the optimal

mini-max risk.

Korostelev et al. (1995b) relax the uniform distribution and consider both FDH and DEA

estimators, again with p = 1 and q ≥ 1. Here the risk of the estimators are defined in terms of

dL, the Lebesgue measure of the symmetric difference between sets. Under free disposability

assumption (but not convexity of Ψ), Korostelev et al. (1995b) obtain

dL(Ψ̂FDH(Xn),Ψ) = Op

(
n−1/(1+q)

)
, (4.2)

where dL denotes the Lebesgue measure of the symmetric difference between two sets. Adding

the assumption of convexity of Ψ, they obtain

dL(Ψ̂DEA(Xn),Ψ) = Op

(
n−2/(2+q)

)
. (4.3)

Korostelev et al. (1995b) show also that under their respective frameworks, both the FDH and

the DEA estimators converge with the best possible rates in the class of monotone boundaries

for FDH and the class of monotone and concave boundaries for DEA.

These results also reveal for the first time that the nonparametric envelopment estimators

suffer from the “curse of dimensionality” shared by most nonparametric techniques. This was

new, even if not a surprise in the statistical world; FDH and DEA are consistent and share

the best possible rates in their respective class, but ever more data are needed as the the

dimensionality of the problem increases.

3 Note that Afriat (1972), in the univariate output case, also introduced some statistical methods in
his study, by considering a parametric, beta distribution for inefficiency, and using maximum likelihood for
parameter estimation. However, no statistical properties are established in this paper.
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A bit later, Kneip et al. (1998) (for the DEA case) and Park et al. (2000) (for the FDH

case) derive the rates of convergence for the efficiency estimators in the more general setting

of multivariate inputs and outputs. For the FDH estimators, only the free disposability

assumption is needed; for the DEA estimators, the convexity assumption is required. Under

some regularity assumptions (e.g., smoothness of the frontier, continuity of the density of

(X, Y ) near the boundary, and f(x, y) strictly positive on the frontier), they obtain for any

fixed point (x, y) ∈ Ψ

θ̂•(x, y)− θ(x, y) = Op

(
n−τ
)
, (4.4)

where “•” represents either FDH or VRS and τ = 1/(p + q) for the FDH case (only under

the free disposability assumption) and τ = 2/(p + q + 1) for the VRS-DEA case (adding the

convexity assumption). Adding the assumption that Ψ∂ is globally CRS, Park et al. (2010)

prove that the rate of the CRS-DEA estimator improves to τ = 2/(p + q). Interestingly, in

this case, whenever p + q ≤ 4, the rate of the nonparametric estimator θ̂CRS(x, y) is faster

than the usual
√
n parametric rate, but only under globally CRS. Even more recently, Kneip

et al. (2013b) prove that the VRS-DEA estimator also achieves the rate with τ = 2/(p + q)

when Ψ∂ is globally CRS.

The rate in (4.4) for the input-oriented Farrell-Debreu radial score also holds for the

output-oriented case after straightforward changes in notation. Wilson (2011) establishes the

same rates for the hyperbolic case, and Simar and Vanhems (2012) and Simar et al. (2012)

establish the same rates for the directional case.

Asymptotic law

Statistical consistency is a fundamental, essential property of any estimator, but for inference,

sampling distributions or their approximations are needed. The FDH case is easier because it

is linked to the estimation of a maximum or a minimum of the support of some appropriate

random variable. The first result is due to Park et al. (2000), who shown that under mild

regularity conditions,

n1/(p+q
(
θ̂FDH(x, y)− θ(x, y)

)
L−→ Weibull

(
µp+q, p+ q

)
. (4.5)

Park et al. describe the parameter µ of the limiting Weibull and show that µp+q is the

probability of observing a firm dominating the point (x∂ + ζ, y) for small ζ, where (x∂, y) as

the reference frontier point of (x, y) in the input direction such that x∂ = θ(x, y)x ≤ x. Park

et al. suggest a consistent estimator of µ and a way of selecting the “smoothing” parameter ζ in

simulated samples, but in practice this parameter is difficult to implement. Hence bootstrap

techniques are an attractive alternative. Bădin and Simar (2009) propose a simple way to

correct the inherent bias of the FDH estimator in finite samples.
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In the particular case of one input in the input orientation (or of one output in the output

orientation), Daouia et al. (2010) use results from Extreme Value Theory (EVT) to extend

the above result in cases where the density of (X, Y ) smoothly tends to zero as, for example,

in the univariate, input orientation, x → x∂. The result is similar, but as expected the rate

of convergence deteriorates by the speed (the number of derivatives converging to zero) with

which this density approaches zero at the frontier point. Daouia et al. also examine the case

where the density of (X, Y ) tends to infinity when approaching the frontier, with the reverse

effect (i.e., improving the rate of convergence). Recently, Daouia et al. (2013) generalize

these results from EVT to the full multivariate setting by considering the behavior of the

joint density of X and Y near the boundary along the appropriate ray (e.g., x for the radial

oriented measure), and obtain similar results.

The DEA cases are much more difficult to analyze, because the efficient frontier is de-

termined by a facet of a convex polyhedra (for the VRS case) or of a convex cone (for the

CRS case). Results from EVT cannot be directly applied. The main results are Kneip et al.

(2008) for the VRS-DEA case, and Park et al. (2010) for the CRS-DEA case. As usual, for

the VRS-DEA case, both free disposability and convexity of Ψ are needed; for the CRS-DEA

case, the additional assumptions of global CRS is required. Under analog mild regularity

conditions (in particular, strict positivity of the joint density on the frontier),

nτ
(
θ̂•(x, y)− θ(x, y)

)
L−→ Q•(η), (4.6)

where “•” now denotes either VRS or CRS, and where Q•(·) is some regular, non-degenerate

distribution with unknown parameters η depending on unknown quantities characterizing the

DGP. Kneip et al. (2008) analyze the VRS case, with τ = 2/(p+ q+1), and Park et al. (2010)

examine the CRS case, with the faster rate τ = 2/(p + q). There are no explicit closed form

for the limiting distribution in either case. Jeong (2004) and Jeong and Park (2006) suggest a

way to simulate the distribution in the univariate input case, and Park et al. (2010) provide a

way to simulate the distribution in the multivariate CRS-DEA case, but these methods involve

some smoothing parameters and are difficult to implement in practice. See Jeong and Park

(2011) for a theoretical survey of such methods. Clearly, for the DEA estimators, bootstrap

techniques are very useful.

Note that in the particular case of one input and one output, Gijbels et al. (1999) provide a

closed-form expression of the asymptotic distribution of the VRS-DEA estimator; in the same

simple setting, Park et al. (2010) show that the CRS-DEA estimator has a simple exponential

distribution. Interestingly, Kuosmanen (2008) finds that for the univariate output case, the

DEA estimator can be obtained by solving a convex nonparametric least-squares problem

which as an equivalent representation in term of a quadratic programming problem, where
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the objective is quadratic but with linear constraints.

Note that other approaches (e.g., Hall et al., 1998) use estimators of boundaries without

imposing the natural economic constraints (like monotonicity or concavity); hence these are

less popular than DEA/FDH estimators in the field of productivity and efficiency analysis.

4.2 Bootstrap techniques

As noted above, there are several difficulties associated with the practical use of the asymptotic

results described in Section 4.1 for making inference. So far, bootstrap methods seem to be

the only viable alternative for making inference on θ(x, y).

The first suggestion to use of bootstrap methods in the context of production and effi-

ciency analysis appears in Simar (1992) in a panel-data setting, but without any theoretical

justification. The first theoretical results for using bootstrap in a frontier setup appear in

Hall et al. (1995), where consistency of the bootstrap is established for the particular case of

a semiparametric panel model; a double bootstrap is recommended to improve performance

of the approximation.

The first study suggesting bootstrap techniques for assessing the sampling variability of the

VRS-DEA efficiency estimator in a fully nonparametric frontier model is Simar and Wilson

(1998). The procedure is rather simple: the idea is to generate a bootstrap sample X ∗n from Xn
in an appropriate way. Then, efficiency for any point (x, y) of interest is evaluated relative to

a bootstrap estimate Ψ̂V RS(X ∗n) to obtain the corresponding bootstrap value of the efficiency

score, say θ̂∗V RS(x, y) for the (input) radial distance to the boundary of Ψ̂DEA(X ∗n). If the

bootstrap is consistent, then as n→∞,

n2/(p+q+1)
(
θ̂∗V RS(x, y)− θ̂V RS(x, y)

)
approx.∼ n2/(p+q+1)

(
θ̂V RS(x, y)− θ(x, y)

)
, (4.7)

where Monte-Carlo replications of the left hand side can be used to approximate the unknown

right hand side.

The main problem is how X ∗n , i.e., the bootstrap sample of size n, should be generated so

that (4.7) holds. It is well-known from the statistical literature (e.g., Bickel and Freedman,

1981) that the naive bootstrap (i.e., resampling with replacement from the pairs (Xi, Yi) in

Xn) is not consistent due to the unknown boundary of Ψ which is the support of (X, Y ) (see,

for example, Simar and Wilson, 2011a for a pedagogical explanation of the problem). This

fact was not recognized by some in the frontier literature as indicated by the debate in Simar

and Wilson (1999c, 1999b).

Rather than using the inconsistent naive bootstrap, Simar and Wilson (1998) propose using

a smooth bootstrap. In this first study, Simar and Wilson implement the smoothed bootstrap

in a simple model under the assumption that the distribution of the inefficiencies along the
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chosen direction (input rays or output rays) is homogeneous in the input-output space. Hence

the smoothing operates only on the estimation of the univariate density of the efficiencies,

making the problem much easier to handle. Simar and Wilson (2000) extend this idea to a

more general heterogeneous case where the distribution of efficiency is allowed to vary over

Ψ. This requires more complication than the original procedure, and involves the estimation

of a smoothed density of (X, Y ) with unknown support in a (p + q)-dimensional space. No

theoretical justification was given for either approach, but results from intensive Monte-Carlo

experiments described in both papers suggest that these bootstrap procedures give reasonable

approximations for correcting the bias of the efficiency estimates and for building individual

confidence intervals for the efficiency of any fixed point (x, y).

The full theory on the asymptotic properties of the VRS-DEA estimator and of the boot-

strap is established in Kneip et al. (2008). Here, two bootstrap techniques are proven to be

consistent: (i) a double-smooth bootstrap where in addition to smoothing the empirical dis-

tribution of the data, the support of Ψ is estimated by a smoothed version of the VRS-DEA

estimator; and (ii) a subsampling bootstrap.

The double-smooth bootstrap developed by Kneip et al. (2008) involves numerical diffi-

culties making it difficult to implement and computationally demanding. Kneip et al. (2011)

provide a simplified, consistent, and computationally-efficient version of the double-smooth

bootstrap. The idea is rather simple. It is well-known that the naive bootstrap does not work,

but the problem is localized to points near the boundary. The idea behind the simplified Kneip

et al. (2011) method is to draw naively among observations which are “far” from the frontier

and draw the remaining points from a uniform distribution with support “near” the frontier.

This neighborhood of the frontier is tuned by a smoothing parameter that can be selected

by simple rule of thumb. For obtaining consistency, the VRS-DEA frontier estimate must be

smoothed, and here a second bandwidth parameter is selected by cross-validation methods.

The subsampling approach is much more simple to implement, since a bootstrap sample

X ∗m, where m = nγ for some γ ∈ (0, 1), is obtained by drawing with (or without) replacement

m pairs (Xi, Yi) from the original sample Xn. Kneip et al. (2008) prove consistency of sub-

sampling, but do not provide suggestions for how a value for m might be selected in practice.

Their simulation results indicate that performance of the subsampling bootstrap in terms of

achieved coverages of estimated confidence intervals is quite sensitive to the choice of m.

Unless the convexity assumption is imposed on Ψ, the FDH or the LFDH estimators

must be used, as the DEA estimators are inconsistent without convexity of Ψ. The limiting

Weibull distribution is not easy to use since it contains an unknown parameter that is not

easy to estimate in practice. Jeong and Simar (2006) prove that the subsampling provides

a consistent approximation of the sampling distribution of FDH and LFDH estimators, but
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here again, no practical advice is offered on how to select an appropriate subsample size.

Simar and Wilson (2011a), using results from Politis et al. (2001) and Bickel and Sakov

(2008), provide a data-based algorithm for selecting an appropriate value of the subsample

size m, for both the FDH and DEA cases. The idea is to compute the object of interest (e.g.,

bounds of a confidence interval, or bias estimate) for various values of m on some selected

grid. Then the value of m where the results show the smallest volatility is selected. This

volatility can be computed for each value of m in the grid by computing, for example, the

standard deviation between the 3 or 5 values found for the adjacent values of m. Simar and

Wilson (2011a) investigate the performance of their method (in terms of achieved coverages

of individual confidence intervals for efficiency scores) by intensive Monte-Carlo experiments,

for both FDH and DEA estimators. The results indicate that the method works well for

moderate sample sizes faced in practice, providing reasonable approximations of the sampling

distribution of the estimators.4

5 Robust Versions of Envelopment Estimators

5.1 Probabilistic formulation of the production process

In an innovative paper, Cazals et al. (2002) focus on the probabilistic structure of the DGP.

Doing so permits the efficiency measures defined in (2.6)–(2.9) to be reformulated and suggests

alternative features that may be estimated. Clearly, the DGP is completely characterized by

the bounded joint density of (X, Y ), or any one-to-one transformation of it. It is convenient

to characterize the joint probability law of (X, Y ) by

HXY (x, y) = Pr(X ≤ x, Y ≥ y), (5.1)

which is the probability of observing a firm dominating the production plan (x, y). The

attainable set Ψ is the support of HXY . This joint distribution can be decomposed by writing

HXY (x, y) = Pr(X ≤ x | Y ≥ y) Pr(Y ≥ y) = FX|Y (x | y) SY (y), (5.2)

while noting that the conditional distribution function (DF) FX|Y (x | y) is non-standard since

the conditioning on Y is not Y = y or Y ≤ y but instead Y ≥ y.

Remarkably, as shown by Daraio and Simar (2007b) by extending Cazals et al. (2002)

to multivariate settings, under the free disposability assumption the Farrell-Debreu input-

oriented efficiency measure in (2.6) can be defined equivalently as

θ(x, y) = inf
{
θ | FX|Y (θx | y) > 0

}
. (5.3)

4 Note that Jeong and Park (2011) suggest an alternative way to select a subsample size, for special case
of a univariate output when output-efficiency is estimated.
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Then obvious nonparametric estimator of θ(x, y) is obtained by replacing FX|Y (θx | y) in (5.3)

with its empirical analog, i.e.,

F̂X|Y,n(x | y) =

∑n
i=1 1(Xi ≤ x, Yi ≥ y)∑n

i=1 1(Yi ≥ y)
. (5.4)

Then for any y in the support of Y , simple manipulations reveal that

θ̂(x, y) = inf
{
θ | F̂X|Y,n(θx | y) > 0

}
= min

i|Yi≥y
max
j=1,...,p

(
Xj
i /x

j
)
, (5.5)

which can be shown to be equal to the expression given in (3.3) for the FDH estimator. This

gives an additional natural motivation for the FDH estimators. Similar results are obtained

for the output orientation by writing HXY (x, y) = SY |X(y | x)FX(x) where the conditional

survival function SY |X(y | x) is also non-standard since the conditioning event is X ≤ x

instead of X = x or X > x.

This nice and simple idea opens the door to a number of other developments such as the

robust versions of envelopment estimators described below as well as the conditional measures

of efficiency introduced later in Section 6. Wheelock and Wilson (2008) and Wilson (2011)

extend this approach to hyperbolic measures, and Simar and Vanhems (2012) extend the

approach to directional measures.

5.2 Order-m partial frontiers

Both the FDH and the DEA estimators fully envelop the sample observations in Xn. As a

result, FDH and DEA estimators are very sensitive to outliers or extreme data points. Several

methods exist (e.g., Wilson (1993, 1995); Simar, 2003, Porembski et al., 2005) for detecting

outliers in this setting, but determining what constitutes an “outlier” necessarily involves

some subjectivity on the part of the researcher.

Alternatively, Cazals et al. (2002) introduce a concept of a “partial” frontier (as opposed

to the “full” frontier Ψ∂) that provides a less-extreme benchmark than the support of the

random variable (X, Y ) and has its own economic interpretation. The concept is presented

here in the input orientation, but extension to the output, hyperbolic, and directional cases

is straightforward.

To begin, consider a single input (or cost) x. So here the full frontier can be represented

by a function ϕ(y) = inf
{
x | FX|Y (x | y) > 0

}
, where the conditional DF is defined above in

(5.2) with conditioning on Y ≥ y. The order-m frontier for an integer m ≥ 1 is defined by

ϕm(y) = E [min(X1, . . . , Xm | Y ≥ y] =

∫ ∞
0

[
1− FX|Y (x | y)

]m
dx (5.6)
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provides a less-extreme benchmark for (x, y) than the full frontier; the first equality in (5.6)

defines the concept, and the second is a property derived by Cazals et al. (2002). So, the

benchmark for a unit (x, y) producing level y of outputs is the expected minimum input level

among m firms drawn at random from the population of firms producing at least output level

y. For finite m, this is clearly less extreme than the full frontier. Cazals et al. (2002) show that

ϕm(y)→ ϕ(y) as m→∞. The order-m efficiency score can be defined as θm(x, y) = ϕm(y)/x.

Note that for finite m, θm(x, y) is not bounded above by 1, in contrast to θ(x, y) defined in

(2.6).

Cazals et al. (2002) extend the order-m efficiency score to multivariate settings as follows.

Consider m random draws of random variables Xi, i = 1, . . . ,m from FX|Y (x | y). Define the

random set Ψm(y) =
{

(u, v) ∈ Rp+q
+ | u ≥ Xi, v ≥ y

}
. Then the Farrell-Debreu input oriented

efficiency score of (x, y) with respect to the attainable set Ψm(y) is given by

θ̃m(x, y) = min {θ | (θx, y) ∈ Ψm(y)} = min
i=1,...,m

max
j=1,...,p

(
Xj
i /x

j
)
. (5.7)

Since Ψm(y) is random, θ̃m(x, y) is a random variable. Cazals et al. define the order-m input

efficiency score as the expectation of this random variable, i.e.,

θm(x, y) = E
[
θ̃m(x, y) | Y ≥ y

]
=

∫ ∞
0

[
1− FX|Y (ηx | y)

]m
dη. (5.8)

This can be easily computed by a simple Monte Carlo method.

Extension to the output direction is simple; see Cazals et al. (2002) for details. Extension

to hyperbolic and directional distances is somewhat more complicated due to the nature of the

order-m concept in the multivariate framework, and requires some additional work. Results

are given by Wilson (2011) for the hyperbolic case, and by Simar and Vanhems (2012) for

directional cases.

A nonparametric estimator of the order-m input-efficiency score is obtained by plugging

the empirical distribution F̂X|Y,n(θx | y) into (5.8) to replace the unknown FX|Y (x | y). Cazals

et al. derive a remarkable property for the resulting estimator, i.e.,

√
n
(
θ̂m(x, y)− θm(x, y)

)
L−→ N(0, σ2

m(x, y)), (5.9)

where an explicit expression for σ2
m(x, y) is given by Cazals et al.. The

√
n rate of convergence

is rather unusual in nonparametric settings; the asymptotic normality facilitates easy con-

struction of confidence intervals. Of course, similar properties hold in the output orientation.

In addition, all the properties of the order-m radial distances and their estimators have been

extended to hyperbolic and directional distances by Wilson (2011) and Simar and Vanhems

(2012), respectively.
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5.3 Order-α quantile frontiers

An alternative partial frontier concept for defining a less-extreme benchmark than the full

frontier is related to the concept of conditional quantiles, though different from the usual

conditional quantile. Aragon et al. (2005) introduce the idea for the case of a univariate input

(for an input-oriented measure) or a univariate output (for the output orientation) by using

quantiles of a nonstandard, univariate DF. These ideas are extended to the full multivariate

setting by Daouia and Simar (2007), who derive quantiles along the radial distances.

Working in the input direction, the central idea is to benchmark the unit operating at (x, y)

against the input level not exceeded by (1− α)× 100-percent of firms among the population

of units producing at least output level y. The resulting efficiency measure is defined by

θα(x, y) = inf
{
θ | FX|Y (θx | y) > 1− α

}
, (5.10)

where it is important to recall that the conditioning is on Y ≥ y.5 The quantity θα(x, y) is

called the “input efficiency at level α×100%.” If θα(x, y) = 1, then the unit operating at (x, y)

is the said to be input efficient at the level α× 100% since it is dominated by firms producing

at least the level of output y with probability 1 − α. Similar to the order-m measure, it is

clear that θα(x, y)→ θ(x, y) as α→ 1; i.e., the full frontier efficiency measure is recovered as

α→ 1.

A nonparametric estimator of θα(x, y) is obtained by using the empirical DF F̂X|Y,n(θx | y)

to replace FX|Y,n(θx | y) in (5.10); a simple computational algorithm is provided in Daouia

and Simar (2007), where the corresponding output-oriented measure and its estimator are also

presented. Wheelock and Wilson (2008) extend the order-α concept to hyperbolic measures,

and provide a fast numerical algorithm for computing estimates. Simar and Vanhems (2012)

extend the method to directional distances.

The properties of the nonparametric order-α estimators are similar to those of the order-m

estimators; e.g., in the input orientation,

√
n
(
θ̂α,n(x, y)− θα(x, y)

)
L−→ N(0, σ2

α(x, y)), (5.11)

where again an explicit expression is given by Daouia and Simar (2007) for σ2
α(x, y). Similar

results hold in the output, hyperbolic, and directional cases.6

5 Note that the approach here is quite different from traditional nonparametric quantile regression (e.g., Fan
et al., 1994; Li and Racine, 2007), where the conditioning is on the event Y = y. The non-standard conditioning
on Y ≥ y in (5.10) guarantees monotonicity properties of the resulting frontier estimates, providing a better
economic interpretation (as explained in the next subsection). In addition, conditioning on Y ≥ y allows an
estimation procedure that avoids smoothing techniques, leading to the

√
n convergence rate of the resulting

nonparametric estimators.
6 Note that Martins-Filho and Yao (2007) suggest, in the case of a univariate output in an output orien-
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5.4 Further extensions

Cazals et al. (2002, Theorem 2.4) and Daouia and Simar (2007, Proposition 2.5) show that

the order-m and order-α partial efficiency scores are monotonic under the assumption of tail

monotonicity of the implied nonstandard, conditional DF. In other words, So, for example,

the desired monotonicity property for θm(x, y) and θα(x, y) are monotone, nondecreasing with

y under the tail monotonicity assumption. Similarly, the corresponding output measures

λm(x, y) and λα(x, y) are monotone nondecreasing with x. In the input-oriented case, tail

monototonicity amounts to assuming that for all y′ ≥ y, FX|Y (x | y′) ≤ FX|Y (x | y). This is

not too restrictive in practice; roughly speaking, it requires that the probability of using less

that a fixed input level x decreases as the production level increases.

Unfortunately, even with the tail monotonicity assumption, in finite samples the partial

efficiency estimators do not share this monotonicity property. For the univariate case (e.g.,

with one input in the input orientation), Daouia and Simar (2005) propose an easy way to

monotonize the estimated frontiers and show that the modified estimators retain the same

asymptotic properties as the original estimators. In a more recent study, Daouia et al. (2013)

propose an alternative way for defining the order-α efficiency scores, in a full multivariate

setting. The resulting estimators share the desirable monotonicity property and have superior

robustness properties, even if the tail monotonicity assumption does not hold. This new

quantile approach is obtained from the directional distance estimator of order-α described in

Simar and Vanhems (2012). In the input orientation it involves a vector of zero directions

for the outputs; in the output orientation, a vector of zero directions is used for the inputs.

Analog results for the order-m case, should be available soon.

5.5 Robust estimation of the full frontier

Both the order-m and the order-α partial frontiers can be used to provide robust estimation

of the full frontier itself, or of the corresponding full-efficiency scores defined in (2.6)–(2.9).

Cazals et al. (2002) show that the estimator θ̂m(x, y) converges to θ̂FDH(x, y) as m → ∞. If

the convergence is fast enough (i.e., m = O(n)), then θ̂m(x, y) converges also to the full frontier

efficiency score θ(x, y), but with the same limiting distribution and the same nonparametric

rate of the FDH estimator when n→∞. However, for finite n, m will be finite and will not

envelop all the data points; hence the order-m estimator remains more robust than the FDH

estimator in the presence of outliers.

More recently Daouia et al. (2012) have shown, for case of a univariate input in the input

tation, smoothing the estimator of the conditional DF before determining its quantile-frontier. It is not clear
that this smoothing, which requires a bandwidth, adds any substantial gain over the simpler procedure using
the
√
n-consistent empirical conditional DF as described above.
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orientation, by letting m converge to ∞ slowly enough, the order-m estimator provides an

asymptotically normally-distributed estimator of distance to the full frontier. The necessary

rate for m is roughly m = O(n1/3); see Daouia et al., 2012 for a precise formulation.

Not surprisingly, very similar properties hold for the order-α frontiers. Clearly, as α→ 1,

the order-α estimator θ̂α(x, y) converges to the FDH estimator. But, as shown in Daouia and

Simar (2007), if α = α(n)→ 1 fast enough, i.e., if n(p+q+1)/(p+q)(1−α(n))→ 0 as n→∞, the

order-α(n) estimator can be used to estimate full efficiency, obtaining the properties of the

FDH estimator (with nonparametric rate of convergence and limiting Weibull distribution).

Of course in practice, n is finite, so the order-α frontier will not envelop all the data points, and

will also be more robust with respect to extreme or outliers than the ordinary FDH estimator.

Using results from EVT, Daouia et al. (2010) show for the univariate input case in the

input orientation that choosing α = α(n) converging to 1 slowly enough, an estimator of

distance to the full frontier with a normal limiting distribution is obtained.

Order-m and order-α efficiency estimators are compared and investigated from the Robust-

ness Theory perspective in Daouia and Ruiz-Gazen (2006) and Daouia and Gijbels (2011b,

2011a). They demonstrate relations between the two concepts and analyze their respective

advantages and limitations. Daouia and Gijbels (2011b) formalize a data-driven procedure

to detect outliers and select appropriate values of the orders, providing a theoretical back-

ground for some of ideas in Simar (2003) for detecting outliers. As noted at the beginning of

Section 5.2, detection of outliers is critical when using envelopment estimators, and several

methods exist for detecting outliers in the context of efficiency estimation. Careful applied

researchers should use several of these, as any one method is unlikely to detect all outliers in

every situation.

6 Introducing Environmental Factors

The analysis of productive efficiency has in general two components: (i) estimation of a

benchmark frontier that serves to evaluate performance of firms; and (ii) investigation of the

influence of outside, environmental factors on the production process. These factors, denoted

below by Z ∈ Z ⊂ Rr, may reflect difference in ownership, regulatory constraints, business

environment, etc. Such factors are neither inputs nor outputs, and are typically not under

control of the manager, but nonetheless they may influence the production process. The effect

of Z may affect the range of attainable values for the inputs and outputs (X, Y ), and hence

the shape of the boundary of the attainable set; or Z may affect only the distribution of

inefficiencies inside the attainable set; or, in some cases, Z may affect both. Of course Z

might also be completely independent of (X, Y ). The effect of Z is unknown, and must be
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estimated appropriately.

There has been dozens of paper in the nonparametric literature suggesting ways to in-

troduce Z into the analysis of the production process. Some are rather simple but quite

restrictive (e.g., the one-stage approaches discussed below), while others are valid only under

very peculiar, restrictive conditions that are rarely tested. Examples of the latter, includ-

ing the two-stage approaches discussed later, can be found in hundreds of published applied

papers. Cazals et al. (2002) show a natural way to introduce environmental variables by ex-

tending their probabilistic formulation of the production process. This lead to the conditional

efficiency scores defined in Daraio and Simar (2007b). The various approaches are briefly

reviewed below.

6.1 One-stage approaches

The earliest attempts to incorporate environmental variables into the analysis of production

were one-stage approaches along the lines of Banker and Morey (1986) and Färe et al. (1989).

In this approach, the Z ∈ Rr is treated as a vector of r freely disposable inputs or outputs that

contribute to the definition of an augmented attainable set Ψ ⊂ Rp
+×R

q
+×Rr. Then efficiency

scores are defined relative to the boundary of this new set; e.g., in the input orientation, one

might define

θ(x, y, z) = inf {θ | (θx, y, z) ∈ Ψ} . (6.1)

Then nonparametric DEA or FDH estimators of Ψ treat Z as a freely disposable input if

it is favorable to production of output, or as a freely disposable, undesirable output if it is

detrimental to output production.

This approach has its own merits and is particularly easy to implement, but it has three

important drawbacks. First, the researcher must know in a priori whether Z is favorable or

detrimental. Second, the approach only allows monotone effects of Z on the process (in many

cases, effects may be either U -shaped or inverted U -shaped). Finally, one must assume free

disposability, and in addition convexity if DEA estimators are used, of the augmented set Ψ.

For these reasons, this approach has been used less than others in recent years.

6.2 Two-stage approaches

A large part of the literature focuses on two-stage approaches for including environmental

factors. One can find perhaps hundreds of papers using this approach, but as Simar and

Wilson (2007) discuss, in most of these studies statistical models are ill-defined, inappropriate

estimators are used, and inference is inconsistent. The basic idea is to estimate efficiency

scores in a first stage considering only the space of inputs and outputs (X, Y ), ignoring Z.
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Then in a second stage, the estimated efficiencies are regressed on Z. Although DEA and FDH

efficiency estimates are truncated at one by construction, many examples exist in the literature

where researchers have either ignored this, or have confused truncation with censoring. By

formalizing this procedure, Simar and Wilson (2007 2011b) have shown that (i) this approach

is meaningful only if a “separability condition” between Z and (X, Y ) holds; and (ii) even if

the second stage regression is meaningful, traditional inference is flawed by problems linked to

the fact that the true efficiency scores are not observed, but instead must be replaced by biased

estimators that are not independent. Simar and Wilson suggest use of bootstrap methods for

addressing issue (ii), but the separability assumption remains a restrictive assumption in need

of testing.

The problem can be formalized as follows. Consider the the random variables (X, Y, Z)

defined on an appropriate probability space with support P ⊆ Rp
+ × Rq

+ × Rr. Consider also

the conditional distribution of (X, Y ), conditional on Z = z, described by

HXY |Z(x, y | z) = Pr(X ≤ x, Y ≥ y | Z = z). (6.2)

This is the probability that a firm facing environmental conditions z will dominate the point

(x, y). Given that Z = z, the attainable set of combinations of inputs and outputs is

Ψz =
{

(x, y) ∈ Rp+q
+ | Z = z and x can produce y

}
, (6.3)

the support of HXY |Z(x, y | z).

Denoting as above in (5.2) The unconditional probability of (x, y) being dominated is given

by by (5.2); then obviously

HXY (x, y) =

∫
Z
HXY |Z(x, y | z)fZ(z)dz (6.4)

where fZ(z) is the marginal density of Z. The support of HXY (x, y) is as usual denoted by

Ψ, the marginal attainable set. These attainable sets are related by

Ψ =
{

(x, y) ∈ Rp+q
+ | x can produce y

}
=
⋃
z∈Z

Ψz. (6.5)

Of course, for all z ∈ Z, Ψz ⊆ Ψ.

Now situations where the two-stage approach is meaningful can be described. In particular,

suppose that the shape of the attainable sets Ψz change with z, which is quite natural in many

applications). Then no economic meaning for a firm facing environmental conditions z can

be given to the marginal measure of efficiency (e.g., θ(x, y)) with respect to the boundary

of the marginal set Ψ, because the boundary of this set may not be reachable for the unit

facing condition z. The only situation where any meaning can be attached to these marginal
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measures is the case where the shape of the boundary of the conditional attainable sets is

independent of z. This is the “separability condition” in Simar and Wilson (2007):

Ψz = Ψ, for all z ∈ Z. (6.6)

If this condition is verified, then it is reasonable to use an appropriate second-stage regression

to investigate whether Z has some impact on the distribution of the efficiencies inside the

unique attainable set Ψ, provided one uses methods to make inference consistently.

Additional methodological difficulties are described in Simar and Wilson (2007, 2011b).

Even if the specified second-stage regression model is “true” (or say, appropriate) for the true

values of θ(x, y), these are latent variables and in practice are replaced by nonparametric

estimates, which are biased, suffer form the curse of dimensionality, and are not independent.

The statistical model specified by Simar and Wilson (2007) suggests using a truncated normal

regression, transforming the estimated efficiencies so that they are bounded below by 1 in the

case of input-efficiency estimates. Results from Monte-Carlo experiments presented by Simar

and Wilson indicate that bootstrap algorithms provide reasonable approximation for making

inference in the second stage regression. Park et al. (2008) suggest use of a nonparametric

truncated regression model in the second stage, using local likelihood methods.

Kneip et al. (2013a) analyze the consequence of replacing true, unknown efficiency scores

by DEA or FDH estimators in a second-stage regression, and suggest alternative methods for

obtaining valid inference. Banker and Natarajan (2008) propose a different model where the

two-stage approach can be applied. However, as discussed in Simar and Wilson (2011b), their

model is rather restrictive, and the conventional inference they suggest in the second stage

(using simple OLS techniques) is incorrect due to the problems enumerated in Kneip et al.

(2013a).

6.3 Conditional frontiers

Since the separability condition (6.6) may be problematic, the safest approach for introduc-

ing environmental variables is rely on the conditional model (6.2) along the lines of Cazals

et al. (2002). Daraio and Simar (2007b) define the conditional Farrell-Debreu input efficiency

measure as

θ(x, y | z) = inf {θ > 0 | (θx, y) ∈ Ψz} , (6.7)

i.e., the radial distance (in the input space) from (x, y) to the efficient boundary of units facing

environmental conditions z. Adaptation to the output orientation is straightforward. Along

the lines of the probabilist formulation of efficiency scores in Section 5.1, it can be shown that

θ(x, y | z) = inf
{
θ | FX|Y,Z(θx | y, z) > 0

}
, (6.8)
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which can be compared with (5.3). Note also that here, in FX|Y,Z(x | y, z), the conditioning

event is (Y ≥ y, Z = z). This conditional DF is given by FX|Y,Z(x | y, z) = HXY |Z(x, y |
z)/HXY |Z(∞, y | z).

Nonparametric estimators of the θ(x, y | z) are obtained from a sample Sn =

{(Xi, Yi, Zi)}ni=1 by plugging a nonparametric estimator of FX|Y,Z(x | y, z) into (6.8). Such

estimator may be obtained by standard nonparametric kernel smoothing, e.g.,

F̂X|Y,Z,n(x | y, z) =

∑n
i=1 1(Xi ≤ x, Yi ≥ y)K((Zi − z)/h)∑n

i=1 1(Yi ≥ y)K((Zi − z)/h)
, (6.9)

where K((Zi− z)/h) is a familiar shorthand notation in case of multivariate Z (using product

kernels and a vector of bandwidths h = (h1, . . . , hr)). As noted in Daraio and Simar (2007b),

the kernels must have a compact support. Optimal bandwidth selection procedures for stan-

dard conditional distributions have been proposed by Hall et al. (2004). The procedure has

been adapted to the setup here by Bădin et al. (2010).

The resulting estimator of θ(x, y | z) is called the conditional FDH estimator. Daraio and

Simar (2005, 2007a) show that the estimator is given by the simple expression

θ̂FDH(x, y | z) = inf
{
θ | F̂X|Y,Z,n(θx | y, z) > 0

}
= min
{i : ||Zi−z||≤h}

max
j=1, ... ,p

Xj
i /x

j, (6.10)

where ||a|| denotes the Euclidean norm of a vector a. This can be interpreted as a local-

ized version of the FDH estimator, with localization for data point such that Zi is in an

h-neighborhood of z (compare this with the unconditional FDH given in (3.3)). In fact, the

conditional attainable set is estimated by

Ψ̂z
FDH =

{
(x, y) ∈ Rp+q

+ | x ≥ xi, y ≤ yi for i such that ||Zi − z|| ≤ h
}
. (6.11)

Daraio and Simar (2007a 2007b) suggest convexifying this set to obtain an estimator of Ψz

under the additional assumption of local convexity (i.e., assuming that Ψz is convex):

Ψ̂z
DEA =

{
(x, y) ∈ Rp+q

+ | x ≥
∑
i∈Jz

γixi, y ≤
∑
i∈Jz

γiyi for γi ≥ 0 such that
∑
i∈Jz

γi = 1

}
,

(6.12)

where Jz = {i : ||Zi− z|| ≤ h}. The corresponding conditional DEA estimator of θ(x, y | z) is

obtained as

θ̂DEA(x, y | z) = inf
{
θ | (θx, y) ∈ Ψ̂z

DEA

}
, (6.13)

which can be written as a local version of the linear program in (3.5).

The asymptotic properties of these nonparametric conditional efficiency estimators are

derived in Jeong et al. (2010). To summarize, the properties are similar to those of the
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unconditional DEA and FDH estimators, except that the effective number of observations

used for building the estimators is now nh1 . . . , hr. When optimal bandwidths are selected

as in Bădin et al. (2010), this gives an effective number of observations of the order n4/(4+r)

in place of n for the unconditional estimators. The rates of convergence are thus deteriorated

by this factor.

The conditional efficiency scores have also their robust versions; see Cazals et al. (2002)

and Daraio and Simar (2007b) for the order-m version, and Daouia and Simar (2007) for the

order-α analog. Also, conditional measures have been extended to hyperbolic distances in

Wheelock and Wilson (2008), and to hyperbolic distances by Simar and Vanhems (2012).

Bădin et al. (2012, 2013) suggest useful tools for analyzing the impact of Z on the pro-

duction process, by exploiting the comparison between the conditional and unconditional

measures. These tools (graphical and nonparametric regressions) allow one to disentangle the

impact of Z on any potential shift of the frontier or potential shift of the inefficiency distri-

butions. Daraio and Simar (2013) provide also a bootstrap test for testing the significance of

environmental factors on the conditional efficiency scores.

Recently Florens et al. (2013) propose an alternative approach for estimating the condi-

tional efficiency scores. The approach avoids explicit estimation of a nonstandard conditional

distribution (e.g., FX|Y,Z(x | y, z)). The approach is less sensitive to the curse of the dimen-

sionality described above. It is based on very flexible nonparametric location-scale regression

models for pre-whitening the inputs and the outputs to eliminate their dependence on Z. This

allows one to define “pure” inputs and outputs, and hence a “pure” measure of efficiency. The

method permits returning in a second stage to the original units and evaluating the conditional

efficiency scores, but without explicitly estimating a conditional DF. The paper proposes also

a bootstrap procedure for testing the validity of the location-scale hypothesis.

7 Other Aspects and Open Issues

7.1 Parametric approximations of nonparametric frontier

Nonparametric methods are attractive because they impose few restrictions on either the

functional form of the frontier or on the stochastic part of the model (i.e., the distribution of

the inefficiencies below the frontier). On the other hand, parametric models for the frontier are

appealing because they offer a richer economic interpretation of the production process, e.g.,

sensitivity of the production of output to particular inputs, etc. For purposes of illustration in

the discussion below, consider a single output and a production function Yi = β0 + β′Xi−Ui,
where Ui ≥ 0 (alternatively, for a cost function, Ui ≤ 0); Y and X could be measure on a log

scale.
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The first approach in the parametric world is due to Aigner and Chu (1968), who proposed

enveloping the data in a parametric way by solving some mathematical programs to minimize∑n
i=1 |Ui| or

∑n
i=1 U

2
i with respect to β0, β, subject to Ui ≥ 0. One of the drawbacks of the

approach is that very few useful statistical properties of the resulting estimator of the βs have

been developed (some consistency results have been obtained by Knight, 2006). In addition,

in the mathematical programs, observations far from the frontier have excessive weight (in

particular, when using a quadratic objective) in determining the shape of the optimal frontier.

Finally, since the resulting frontier will envelop all the data points, the estimators will be very

sensitive to outliers.

The other stream of approaches in the parametric framework follows the lines of Greene

(1980) and is based on (shifted) regression ideas. As explained in details in Florens and Simar

(2005), these approaches have several drawbacks. First, they require in most cases specification

of the density of U . Second, independence between the inputs X and the stochastic inefficiency

term U (or at least, E(U |X) = µ for a constant µ) is required for all the proposed estimators.

Most importantly, however, since E(Yi|Xi) = β0 + β′Xi − µ, the frontier function is, by

construction, a shift of the regression of Y on X, i.e, the conditional mean function. Hence

any estimation procedure (by Modified OLS, or MLE) will capture the shape of the “middle”

of the cloud of data points. This is not natural for capturing the shape of the frontier function,

which may differ from the shape of the conditional mean function.

Florens and Simar (2005) address all these drawbacks. A parametric frontier model is

estimated by using a two-step procedure. In the first step, a nonparametric method is used to

estimate where the production frontier is located, and all the data points are projected onto

this frontier. Then in a second step, these projections are adjusted using simple methods to fit

a specified parametric model. Since the production frontier is the locus of optimal production

plans, one should expect a better parametric fit if only efficient units are used to estimate

it. This idea appears in Simar (1992), but with no theoretical justification nor results on

the statistical properties of the estimators of the βs. When using the FDH estimator in the

first stage, Florens and Simar (2005) prove the consistency of the method, and in the order-m

case (which is more robust to outliers), they obtain
√
n-consistency and asymptotic normality,

with an explicit expression for the variance. Daouia et al. (2008) obtain similar results when

using the robust order-α estimators in the first stage. Daraio and Simar (2007a) indicate how

to extend these ideas to a full multivariate setting by using a parametric model for a distance

function. These approaches are very appealing and suggest that bridges can built between

the two worlds (i.e., parametric and nonparametric).
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7.2 Nonparametric Stochastic Frontier

One of the limitations of the nonparametric envelopment estimators described above is that,

as with all estimators in “deterministic” frontier models, they do not allow for noise in the

DGP. It is frequently argued that parametric approaches are superior to the nonparametric

approaches because they admit “stochastic” frontier models such as (2.14). Of course this

neglects the fact that in some applications the parametric restrictions, both on the frontier

function and on the stochastic part of the model, may be irrelevant. A number of recent

papers attempt to introduce noise into nonparametric boundary and frontier estimation. The

robust estimators of the full frontier described above can be viewed as allowing the presence

of noise, but still the underlying model is a “deterministic” one.

Hall and Simar (2002) show that even if the noise is symmetric and the inefficiency distri-

bution has a jump at the frontier, a fully nonparametric model with both noise and inefficiency

is not identified. They provide a strategy that allows introduction of noise into the model

and consistent estimation of the unknown boundary of support of a random variable reflecting

inefficiency. Consistency and identification are obtained by letting the variance of the noise

converge to zero as n → ∞. Monte-Carlo experiments indicate that the procedure works

well for a signal-to-noise ratio (measured by ratio of the respective standard deviations) of 5,

and the authors argue that the signal-to-noise ratio is likely to be high in many applications.

They apply the procedure to estimate nonparametrically a production function, and hence

provide a first nonparametric alternative to classical parametric stochastic frontier models

such as (2.14). Simar (2007) extends these ideas to fully multivariate settings, confirming

good behavior of the resulting modified DEA estimators in the presence of noise of moderate

size.

To solve the basic identifiability issue, some structure on the model is required. One ap-

proach is to leave the production function unspecified while specifying a fully parametric model

for the stochastic part (i.e., specifying a parametric density for the inefficiency term U and for

the independent noise V ). The simplest approach is to assume homoskedasticity of both com-

ponents. This is investigated by Fan et al. (1996) and Kuosmanen and Kortelainen (2012).

These semiparametric approaches are interesting, but they retain both the homoskedastic-

ity assumption of the stochastic terms and the parametric assumptions for the inefficiency

component, and hence are likely to introduce misspecification errors into the model, leaving

statistical consistency in doubt.

Kumbhakar et al. (2007) propose an alternative based on local maximum likelihood tech-

niques. Their model is

Yi = r(Xi) + Vi − Ui, (7.1)
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where U | X ∼ |N(0, σ2
u(X))| and V | X ∼ N(0, σ2

v(X)), with U and V independent condition-

ally on X. The functions r(X), σ2
u(X) and σ2

v(X) are unspecified, as are unknown functional

parameters. Estimation uses local maximum likelihood techniques where the unknown func-

tional parameters are approximated by local polynomials (either linear or quadratic). Kumb-

hakar et al. (2007) provide asymptotic properties, which involve a limiting normal distribution.

The procedure requires selection of bandwidths, which is done by the usual likelihood cross-

validation. Simar and Zelenyuk (2011) extend the procedure to a fully multivariate setup by

using an analog of the model in (7.1) to characterize the univariate distance to a multivariate

boundary surface. By doing so, they provide stochastic versions of DEA and FDH estima-

tors. The resulting estimates show encouraging results, such as adaptation to the size of noise

(i.e., the stochastic FDH/DEA estimators collapse to the usual FDH/DEA estimators in the

absence of noise), robustness with respect to outliers, and other properties. However, the

method is computationally intensive. Recent work by Simar et al. (2013) avoids much of the

computational burden by proposing a nonparametric version of the modified OLS technique.

Asymptotic properties of this nonparametric, modified least-squares estimator are also given.

The latter approaches are appealing and very flexible, but still they require some “local”

parametric assumptions on the distribution of the inefficiency term in order to obtain statistical

consistency. Kneip et al. (2012b) overcome this limitation, obtaining identification of the

model by assuming independent Gaussian noise, but with unknown variance. The inefficiency

distribution is left unspecified, and is estimated by simple histograms. Then the model is

estimated by the penalized likelihood method, where the penalization controls the smoothness

of the histogram. Kneip et al. first address estimation of a univariate boundary, then adapt

the procedure to estimate a production (or cost) function. Although only log(n) convergence

rates are achieved in theory, in practice the resulting estimates behave well in finite samples

of sizes commonly faced in practice, as revealed by Monte-Carlo experiments.

7.3 Testing Issues

For the practitioner, it is important to be able to test empirically hypothesis relating to the

DGP and having to do with the shape of the frontier (e.g., convexity, returns to scale, etc.).

This is important not only for economic considerations, but also for statistical reasons, since as

shown above there is much to be gained in terms of statistical precision by assuming convexity

of Ψ or CRS for Ψ∂ if such assumptions are appropriate. Reducing the dimensionality of the

problem by testing the relevance of certain inputs and outputs or the possibility of aggregating

inputs or outputs is of interest. Conversely, too-restrictive assumptions (e.g., assuming Ψ∂ is

CRS when it is in fact only VRS) lead to inconsistent estimation.

In typical testing problems, a test statistic T (Xn) is defined to discriminate between a null
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and an alternative hypothesis; the primary difficulty is in providing a critical value for a test

of a given size. This has been done in several studies using bootstrap approximations; e.g.,

Simar and Wilson (2001)) use bootstrap methods to test whether inputs or outputs can be

aggregated. Similarly, bootstrap methods are used by Simar and Wilson (2002) to test CRS

versus VRS; by Simar and Zelenyuk (2006, 2007) to test whether efficiency distributions and

their means differ across two samples; by Simar and Wilson (2011a) to test convexity of Ψ;

and by Daraio et al. (2010)) to testing “separability” condition discussed in Section 6.2 in

the presence of environmental factors. These studies used either the restrictive, homogeneous

bootstrap ideas of Simar and Wilson (1998) or the subsampling ideas from Simar and Wilson

(2011a), but lack convincing theoretical justification. Intensive Monte-Carlo simulations in

several of the studies indicate that the suggested procedures achieve reasonable size and power

properties in samples of moderate size, but theoretical results are lacking in these studies. This

gap is filled by Kneip et al. (2013a).

In each case listed above, test statistics involving comparisons of FDH, CRS-DEA, or

VRS-DEA estimates are used. The difficulty for providing theoretical justification for general

hypothesis tests is that the properties of FDH/DEA estimators described in Section 4 hold

only for a given, fixed point of interest, e.g., for θ̂VRS(x, y | Xn), an estimator of θ(x, y), where

(x, y) is non-stochastic. Note that here the notation for the VRS-DEA estimator of θ(x, y)

has been modified to explicitly show that the estimator is based on a random sample Xn of

firms’ input-output combinations. But when constructing test statistics for tests of returns to

scale and other model features, the FDH or DEA estimators are evaluated at random points

(Xi, Yi) ∈ Xn.

To illustrate the problem, consider perhaps the simplest statistic, the sample mean of the

efficiency scores

µ̂n = n−1
n∑
i=1

θ̂(Xi, Yi | Xn), (7.2)

where the efficiency estimators under the summation sign could be FDH, CRS-DEA, or VRS-

DEA estimators. The statistic µ̂n might be used to make inference on the (population)

mean efficiency µθ = E(θ(X, Y )). Denote by σ2
θ = VAR(θ(X, Y )) the population variance of

efficiency scores. If the true efficiencies were observable, one might be happy to use

θn = n−1
n∑
i=1

θ(Xi, Yi) (7.3)

to make inference since under mild regularity conditions,
√
n(θn − µθ)

L−→ N(0, σ2
θ). But of

course θn is a latent variable, and must be replaced by µ̂n, which is observable.

Unfortunately, DEA and FDH estimators are biased and correlated. The bias is of order

n−κ, the same order as the convergence rate, where κ is defined above for FDH, VRS-DEA,
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and CRS-DEA estimators and depends on the dimension p+q of the input-output space. The

bias does not disappear when averaging in (7.2), but the variance tends to zero, as shown in

Kneip et al. (2013a). In fact, Theorem 4.1 of Kneip et al. reveals that under mild regularity

conditions and assumptions appropriate for the given estimator (i.e., free disposability for

FDH, plus convexity for VRS-DEA or constant returns to scale for the CRS-DEA),

√
n(µ̂n − µθ − Cn−κ −Rn,κ)

L−→ N(0, σ2
θ), (7.4)

where C is some constant and Rn,κ = op(n
−κ). This result shows clearly that the inherent bias

of the envelopment estimators “kills” the variance whenever κ ≤ 1/2. Kneip et al. (2013a)

solve the problem by estimating the leading terms of the bias by a kind of generalized jackknife.

Then by using a simple, consistent estimator of the variance, they provide a way for making

inference on µθ using normal approximations. If the dimension p + q is too large (p + q > 4

for the VRS case;, p + q > 5 for the CRS case; or p + q > 3 for the FDH case), this bias

correction is not enough. In these cases, a solution is provided by computing the estimator of

µ by an average of θ̂(Xj, Yj | Xn) over random subsample j = 1, . . . , nκ of observations, where

nκ = [n2κ] ≤ n. Kneip et al. (2013a) show that the resulting statistic has a corresponding

central limit, normal approximation, but with a lower rate.

Kneip et al. (2013b) extend these basic theoretical results to testing problems such as

testing whether mean efficiencies differ across two groups of producers, testing CRS versus

VRS, testing convexity of Ψ. The proposed tests avoid the need for bootstrap methods,

although the bootstrap remains a valid alternative and is perhaps useful in some instances.

The tests are used in an empirical setting by Apon et al. (2013) to first test whether Ψ is

convex, then to test CRS versus VRS in cases where convexity of Ψ is not rejected, and finally

to test for differences in mean efficiency across two groups; the estimators (i.e., FDH, VRS-

DEA, or CRS-DEA) for the last test are chosen according to the outcomes of the first two

tests.

7.4 Nonparametric models for panel data

Many approaches have been proposed for dealing with panel data in the parametric world of

productivity analysis; see Kumbhakar and Lovell (2000) and Greene (2008) and the references

therein. By contrast, although a large literature on using panel data and FDH/DEA estimators

to examine changes in production processes over time, the literature is largely astatistical.

Most of this nonparametric literature revolves around Malmquist indices defined to measure

changes in productivity over time. These changes can be decomposed using various identities

to attribute changes in productivity to changes in efficiency, shifts in the technology Ψ∂, and
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other changes from one period to the next; see Färe et al., 2008 for details and a comprehensive

survey.

To illustrate, consider two periods t1 < t2, with corresponding attainable sets Ψt1 , Ψt2 . Let

(xtj , ytj) denote the production plan of a firm at time tj, j = 1, 2, and let ∆ti
o (xtj , ytj) denote

the output-oriented Shephard (1970) distance (i.e., the inverse of the output-oriented Farrell

efficiency measure) of the point xtj , ytj , relative to the conical hull of Ψti , i = 1, 2. Then the

output-oriented Malmquist productivity index is defined by

Mo =

(
∆t1
o (xt2 , yt2)

∆t1
o (xt1 , yt1)

× ∆t2
o (xt2 , yt2)

∆t2
o (xt1 , yt1)

)1/2

. (7.5)

This gives the geometrical mean of the gain in productivity of the firm moving from (xt1 , yt1)

in period t1 to (xt2 , yt2) in period t2, measured relative to the conical hulls of the attainable sets

in each of the two periods. In practice, the terms ∆ti
o (xtj , ytj) can be estimated by CRS-DEA

estimators.

Simar and Wilson (1999a) adapt the smooth, homogeneous bootstrap of Simar and Wil-

son (1998) to make inference about the measure defined by (7.5), bootstrapping on pairs of

observations (from each of two time periods) to preserve the time dependence. Daskovska

et al. (2010) extend the idea, and introduce some dynamics to provide forecasts of Malmquist

indexes.

Kneip and Simar (1996) use kernel methods to estimate individual production functions

(for each firm) in a panel-data setting, and define the production frontier as the envelope

of the these individual functions. Asymptotic theory is provided, but the method rests on

T → ∞ as well as n → ∞, where T and n denote the number of time periods and number

of firms, respectively. Note that by enveloping the individual production frontiers, Kneip and

Simar anticipate the idea of “metafrontiers” presented by O’Donnell et al. (2008).

Several semiparametric approaches are possible in the context of panel data. Park and

Simar (1994) suggest linear models for the production function with a nonparametric random

firm effect, whose support (i.e., upper boundary) determines the frontier level. Park et al.

(1998) analyze the case where this random effect is correlated with some regressors (inputs).

Park et al. (2003a, 2003, 2007) extend these results to various forms of dynamic models. Kneip

et al. (2012a) extend these ideas to still more general semiparametric models by analyzing a

model having a nonparametric long time trend and a firm-specific technical efficiency term

varying non parametrically with time. The latter is estimated by factor models. This approach

can be viewed as a compromise between the fully parametric approach of Kneip and Simar

(1996) and the somewhat restrictive semiparametric model of Park and Simar (1994). Kneip

and Sickles (2011) provide a comprehensive survey of the various approaches, including the

ones mentioned here.
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8 Conclusion

The field of frontier estimation is fascinating, because it is a nonstandard econometric problem

and is not easy. Both parametric and nonparametric approaches have their own advantages

and disadvantages, but clearly both approaches are statistical in nature. The only real differ-

ences are in the assumptions the researcher willing to make.

Nonparametric methods for efficiency estimation bring together a wide variety of math-

ematical tools from mathematical statistics, econometrics, and operations research. As this

Guided Tour shows, a large number of statistical results are available today, but a number

of challenges remain to be solved. These include the nonparametric treatment of endogeneity

and latent heterogeneity in frontier settings, as well as relevant, flexible nonparametric models

for panel data. These and other unresolved issues are currently being pursued by the authors

of the Guided Tour.
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