1q

UCL **LELEC2313** Université catholique de Louvain

Dynamic modelling and control of electromechanical converters

5.0 credits

2014-2015

30.0 h + 30.0 h

Teacher(s) :	De Jaeger Emmanuel ; Dehez Bruno ;
Language :	Français
Place of the course	Louvain-la-Neuve
Inline resources:	http://icampus.uclouvain.be/claroline/course/index.php?cid=ELEC21313
Prerequisites :	None
Main themes :	 Dynamic models of DC machines Dynamic models of synchronous machines Dynamic models of asynchronous machines Space phasors and variable transformations (Concordia, Park and Clarke)
	 Control of DC machines Vector and scalar control of asynchronous machines Vector control of synchronous machines
Aims :	Contribution of the course to the program objectives (N°) Axis 1 (1.1, 1.2, 1.3), Axis 3 (3.3), Axis 5 (5.6) Specific learning outcomes of the course At the end of the course, the student will be able to : - Derive the dynamic model of electromechanical converters (DC and brushless DC machines, synchronous and asynchronous machines) in order to control them, in particular by exploiting the variable transformations (Concordia, Park and Clarke). - Describe the main control strategies of these converters (scalar V/f control of asynchronous machines, vector and direct torque control for asynchronous and synchronous machines) and choose them according to the application. - Use the adapted dynamic models in order to simulate the dynamic behaviour of these converters - Use the adapted dynamic models in order to synthesize type P, Pl or PlD controllers. - Use the adapted dynamic models in order to check the robustness and performance of a controller regarding modelling simplifications, external disturbances, changes in the machine parameters, The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".
Evaluation methods :	- Homework reporting (50%) - Closed book oral examination (50%)
Teaching methods :	Teaching is organized in the form of: - Lectures; - Homework on modelling and control of the various electromechanical converters seen during the lectures. The homework are performed in groups of 2 or 3 students and lead to a synthesis report, which is evaluated and is involved in the final evaluation of the course.
Content :	 Introduction (1 hour): motivations, types of models, general structure of an electrical drive system, factors of development of electrical drive systems DC machine model (2h): structure of the machine; excitation mode, dynamic equations in the time domain and in the Laplace domain; model simplifications (mechanical, electrical and electromechanical time constants); model improvements (armature resistance, saturation) Space phasors and variable transformations (2 hour): Concordia Clarke and Park transformations Synchronous machine model (4h): equations of the machine in 'abc', 'aß' and 'dq' coordinate systems; round rotor and salient pole machines; particularization to permanent magnet machines Asynchronous machine model (4h): equations of the machine in 'abc', 'aß' and 'dq' coordinate systems DC machine control (2h): general principle, main types of power supply, control with emf compensation, control with and without current measurement for low power machines

Université Catholique de Louvain - COURSES DESCRIPTION FOR 2014-2015 - LELEC2313

	 Synchronous machine control (4h): general principle of vector control in the 'dq' coordinate system; control with emf compensation, taking into account the inverter and the digital controller; flux weakening; particularization to surface mounted and interior permanent magnet machines, salient pole and wound inductor machines; brushless DC machines Asynchronous machine control (4h): equations in the rotor flux coordinate system; general principle of vector control in this coordinate system; vector control with emf compensation; scalar V/f control
Bibliography :	 Slides, books (available online via the intranet UCL): Wach, P., Dynamics and control of electrical drives, Springer, 2011, 456 p. Veltman, A., Pulle, D. W., De Doncker, R. W., Fundamentals of electrical drives, Springer, 2007, 346 p. De Doncker, R. W., Pulle, D. W., Veltman, A., Advanced electrical drives: Analysis, Modeling, Control, Springer, 2011, 462 p.
Other infos :	Concerning the homework: - Supervised sessions are organized weekly in a computer classroom - The software used is Matlab/Simulink
Cycle and year of study :	 Master [120] in Electro-mechanical Engineering Master [120] in Electrical Engineering
Faculty or entity in charge:	ELEC