LMAPR2018 2014-2015 Rheometry and Polymer Processing

2q

5.0 credits

UCL

Université catholique de Louvain

30.0 h + 22.5 h

Teacher(s) :	Van Ruymbeke Evelyne ; Bailly Christian ;
Language :	Français
Place of the course	Louvain-la-Neuve
Inline resources:	icampus website : <u>> http://icampus.uclouvain.be/claroline/course/index.php?cid=MAPR2018</u>
Main themes :	 I. Introduction : industrial polymer processing, non Newtonian fluids, continuum mechanics refresher II. Shear viscosity, normal forces and elongational viscosity: observations and phenomenological models III. Flow through a channel IV. Capillary rheometry and extrusion defects V. Origin of viscoelastic effects; notions of rheological models; introduction to processing flow simulation VI. Cone-plate and plate-plate rheometric flow; Elongational flow VII Major industrial polymer processing operations : rheological aspects, technology and applications
Aims :	Contribution of the course to the program objectives With respect to the LO of the programme KIMA, this activity contributes to the development and acquisition of the following LO:
Evaluation methods :	can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit". The students will be individually graded based on the objectives indicated above. More precisely, the evaluation involves the grading of :
	 The presentation of a project in groups of two or three on a scientifically challenging and industrially relevant issue linked to the course content. This project will carry 1/3 of the total mark. A report on a laboratory and/or a simulation projet on polymer processing or rheometry. This report will carry 1/6 of the total mark. An oral exam based on a list of synthetic questions prepared by the teachers and given during the year. The exam will carry 50%
	of the mark The teachers have the right to reduce the weight of one part of the mark if a deep deficiency (& t;8/20) is found for the other.

Teaching methods :	A combination of : Ex cathedra courses : concepts are illustrated by concrete exemples taken from industrial practice and the experience of the teachers. Rheometry laboratory and/or processing simulation project seminars prepared and presented by the students Laboratory and plant visits
Content :	 I. Introduction : industrial polymer processing, non Newtonian fluids, continuum mechanics refresher II. Shear viscosity, normal forces and elongational viscosity: observations and phenomenological models III. Flow through a channel IV. Capillary rheometry and extrusion defects V. Origin of viscoelastic effects; notions of rheological models; introduction to processing flow simulation VI. Cone-plate and plate-plate rheometric flow; Elongational flow VII Major industrial polymer processing operations : rheological aspects, technology and applications
Bibliography :	Lecture notes on icampus, books from library according to subjects
Other infos :	This course requires basic knowledge of polymer science and continuum mechanics
Cycle and year of study :	 Master [120] in Chemistry and Bio-industries Master [120] in Computer Science Master [120] in Civil Engineering Master [120] in Mathematical Engineering Master [120] in Computer Science and Engineering Master [120] in Biomedical Engineering Master [120] in Mechanical Engineering Master [120] in Electrical Engineering Master [120] in Chemical and Materials Engineering
Faculty or entity in charge:	FYKI