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Abstract 

The goal of this paper is to study the effect of inexact first-order information on the first-order methods 
designed for smooth strongly convex optimization problems. It can be seen as a generalization to the 
strongly convex case of our previous paper [1]. 

We introduce the notion of (δ,L,µ)-oracle, that can be seen as an extension of the (δ,L)-oracle 
(previously introduced in [1]), taking into account strong convexity. We consider different examples of 
(δ,L,µ)-oracle: strongly convex function with first-order information computed at a shifted point, 
strongly convex function with approximate gradient and strongly convex max-function with inexact 
resolution of subproblems. 

The core of this paper is devoted to the behavior analysis of three first-order methods, respectively the 
primal, the dual and the fast gradient method, when used with a (δ, L, µ)- oracle. As in the smooth 
convex case (studied in [1]), we obtain that the simple gradient methods can be seen as robust but 
relatively slow, whereas the fast gradient method is faster but more sensitive to oracle errors. However, 
the strong convexity leads to much faster convergence rates (linear instead of sublinear) for every 
method and to a reduced sensitivity with respect to oracle errors. 

We also prove that the notion of (δ, L, µ)-oracle can be used in order to model exact first-order 
information but for functions with weaker level of smoothness and different level of convexity. This 
observation allows us to apply methods, originally designed for smooth strongly convex function, to 
weakly smooth uniformly convex functions and to derive corresponding performance guarantees. 
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1 The (δ, L, µ)-oracle

We consider the following convex optimization problem:

f∗ = min
x∈Q

f(x), (1.1)

where Q is a closed convex set in a finite-dimensional space E, and function f is convex
on Q. We assume that problem (1.1) is solvable with optimal solution x∗.

In this paper, E is endowed with an Euclidean norm, defined for a given arbitrary
positive definite self-adjoint operator B : E → E∗ by

‖h‖E = ‖h‖2 = 〈Bh, h〉 12 ∀h ∈ E

where E∗ denotes the dual space of E and 〈., .〉, the dual pairing.

1.1 Motivation and definition

Consider S1,1
µ,L(Q), the class of strongly convex functions (with parameter µ) on convex

set Q whose gradient is Lipschitz-continuous (with constant L). It is well-known (see [4])
that functions belonging to this class satisfy

µ

2
‖x− y‖2E ≤ f(x)− (f(y) + 〈∇f(y), x− y〉) ≤ L

2
‖x− y‖2E , ∀x, y ∈ Q. (1.2)

Moreover, it is easy to check that, for a given y, quantities f(y) and∇f(y) are uniquely de-
termined by this pair of inequalities. Therefore, membership in S1,1

µ,L(Q) can be character-
ized by the existence of an oracle returning for each point y ∈ Q a pair (fL,µ(y), gL,µ(y)) ∈
R× E∗, necessarily equal to (f(y),∇f(y)), satisfying

µ

2
‖x− y‖2E ≤ f(x)−

(
fL,µ(y) + 〈gL,µ(y), x− y〉

)
≤ L

2
‖x− y‖2E for all x ∈ Q.

Our definition of the (δ, L, µ)-oracle consists in introducing a given amount δ of toler-
ance in this pair of inequalities:

Definition 1 Let function f be convex on convex set Q. We say that it is equipped with
a first-order (δ, L, µ)-oracle if for any y ∈ Q we can compute a pair (fδ,L,µ(y), gδ,L,µ(y)) ∈
R× E∗ such that

µ

2
‖x− y‖2E ≤ f(x)−

(
fδ,L,µ(y) + 〈gδ,L,µ(y), x− y〉

)
≤ L

2
‖x− y‖2E + δ (1.3)

for all x ∈ Q where δ ≥ 0 and L ≥ µ ≥ 0.

This notion of (δ, L, µ)-oracle can be seen as a generalization of the notion of (δ, L)-
oracle introduced in [1]. The (δ, L)-oracle has been introduced in order to study the effect
of inexact first-order information on the first-order methods designed for an objective
function in F 1,1

L (Q)(= S1,1
0,L(Q)). We do the same here but for the first-order methods of

S1,1
µ,L(Q).

A function f belongs to S1,1
µ,L(Q) if and only it admits a (0, L, µ)-oracle, namely

(f0,L,µ(y), g0,L,µ(y)) = (f(y),∇f(y)). However, the class of functions admitting a (δ, L, µ)-
oracle is strictly larger, and also includes both nonsmooth functions and functions that
are not strongly convex, as we will see in Section 2.5.
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1.2 Properties

The notions of (δ, L, µ) and (δ, L)-oracles are, of course, strongly related:

• A (δ, L, µ)-oracle is also a (δ, L)-oracle.

• A (δ, L)-oracle is a (δ, L, 0)-oracle.

Since a (δ, L, µ)-oracle is also a (δ, L)-oracle, the properties of the (δ, L)-oracle estab-
lished in Section 2.2 of [1] are also true for a (δ, L, µ)-oracle. In addition, we would like
to highlight here two additional properties of a (δ, L, µ)-oracle that will be useful in the
rest of this paper:

• If f admits a (δ, L, µ)-oracle, then cf admits a (cδ, cL, cµ)-oracle for any value of
the constant c > 0. If fi admits a (δi, Li, µi)-oracle, i = 1, 2, then f1 + f2 admits a
(δ1 + δ2, L1 + L2, µ1 + µ2)-oracle.

•

Theorem 1 If f is endowed with a (δ, L, µ) oracle, we have:

fδ,L,µ(αx+ (1− α)y) ≤ (1− α)f(y) + αf(x)− µ

2
α(1− α) ‖y − x‖2E

for all x, y ∈ E,α ∈ [0, 1] and therefore

f(αx+ (1− α)y) ≤ (1− α)f(y) + αf(x)− µ

2
α(1− α) ‖y − x‖2E + δ.

Proof. Let xα = αx+ (1− α)y. We have:

f(y) ≥ fδ,L,µ(xα) + 〈gδ,L,µ(xα), y − xα〉+
µ

2
‖xα − y‖2E

= fδ,L,µ(xα) + α〈gδ,L,µ(xα), y − x〉+
µ

2
α2 ‖y − x‖2E .

and

f(x) ≥ fδ,L,µ(xα) + 〈gδ,L,µ(xα), x− xα〉+
µ

2
‖x− xα‖2E

= fδ,L,µ(xα) + (1− α)〈gδ,L,µ(xα), x− y〉+
µ

2
(1− α)2 ‖y − x‖2E .

Adding the first inequality multiplied by (1−α) and the second inequality multiplied
by α, we obtain the desired inequality.

Therefore if we assume that the function f is endowed with a family of (δ, L(δ), µ(δ))-
oracles and that

1. limδ→0 µ(δ) = µ > 0 then we have:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− µ

2
α(1− α) ‖x− y‖2E

for all x, y ∈ E,α ∈ [0, 1] and we conclude that f is strongly convex with
parameter µ

2. limδ→0 µ(δ) = 0 then we have:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x, y ∈ E,α ∈ [0, 1] and we can only conclude that f is convex.
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1.3 Paper Structure

In Section 2, we consider different examples of (δ, L, µ) oracle: strongly convex functions
with first-order information computed at shifted points, strongly convex functions with
approximate gradient, strongly convex max-functions with inexact resolution of subprob-
lems, etc. We prove also that the notion of (δ, L, µ)-oracle can be used in order to model
exact first-order information of weakly smooth uniformly convex functions.

Sections 3, 4 and 5 are devoted to the behavior analysis of three first-order methods of
smooth strongly convex optimization, respectively the Primal Gradient Method (PGM),
the Dual Gradient Method (DGM) and the Fast Gradient Method (FGM), when used
with a (δ, L, µ)-oracle. As in the smooth convex case, we obtain that the PGM (and the
DGM) can be seen as robust but relatively slow methods, whereas the FGM is faster
but more sensitive to oracle errors. However, strong convexity leads to much faster con-
vergence rates (linear instead of sublinear) for every method and to a smaller sensitivity
with respect to oracle errors (bounded instead of unbounded accumulation of errors for
the FGM).

In Section 6, using the fact that an exact oracle of a weakly smooth uniformly convex
function can be seen as a (δ, L, µ)-oracle, we obtain the complexity of our different first-
order methods on such kind of objective function. The last section (Section 7) is devoted to
the obtainment of lower bounds on the error increase for any first-order method designed
for smooth strongly convex functions and used with a (δ, L, µ)-oracle.

2 Examples of (δ, L, µ)-oracle

2.1 Strongly convex function with computation at shifted points

Let function f ∈ S1,1
µ(f),L(f)(Q) be endowed with an oracle providing at each point y ∈ Q,

the exact values of the function and its gradient albeit computed at a shifted point ŷ
different from y.

1. Since f is strongly convex with parameter µ(f), we have

f(x) ≥ f(ŷ) + 〈∇f(ŷ), x− ŷ〉+
µ(f)

2
‖x− ŷ‖2E , ∀x ∈ Q.

Using the convexity of ‖.‖2E , we have ‖x− y‖2E ≤ 2 ‖x− ŷ‖2E + 2 ‖ŷ − y‖2E and
therefore

f(x) ≥ f(ŷ)+〈∇f(ŷ), x−y〉+〈∇f(ŷ), y−ŷ〉+µ(f)

4
‖x− y‖2E−

µ(f)

2
‖ŷ − y‖2E . (2.1)

2. Since f has a Lipschitz-continuous gradient with constant L(f), we have:

f(x) ≤ f(ŷ) + 〈∇f(ŷ), x− ŷ〉+
L(f)

2
‖x− ŷ‖2E ∀x ∈ Q.

Using the convexity of ‖.‖2E , we have ‖x− ŷ‖2E ≤ 2 ‖y − ŷ‖2E + 2 ‖x− y‖2E and
therefore

f(x) ≤ f(ŷ)+〈∇f(ŷ), x−y〉+〈∇f(ŷ), y−ŷ〉+L(f) ‖y − ŷ‖2E+L(f) ‖x− y‖2E . (2.2)

Letting µ = µ(f)
2 , L = 2L(f) and δ = L(f) ‖y − ŷ‖2E + µ(f)

2 ‖y − ŷ‖
2
E , in view of the

equations 2.1 and 2.2, we have that

(fδ,L,µ(y) := f(ŷ) + 〈∇f(ŷ), y − ŷ〉 − µ(f)

2
‖y − ŷ‖2E , gδ,L,µ(y) := ∇f(ŷ))

is a (δ, L, µ) oracle for f .
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2.2 Functions approximated by a smooth strongly convex func-
tion

When a function f can be well approximated by a smooth strongly convex function f̄ , in
the sense that their difference is bounded, the exact values of f̄ and its gradient provide a
(δ, L, µ)-oracle for f . Indeed, assume that there exists a smooth strongly convex function
f̄ ∈ S1,1

µ,L(Q) such that f̄ is a δ-lower approximation of f on all Q, i.e.

0 ≤ f(y)− f̄(y) ≤ δ ∀y ∈ Q.

Using the fact that f̄ ∈ S1,1
µ,L(Q), we obtain

f(x) ≥ f̄(x) ≥ f̄(y) + 〈∇f̄(y), x− y〉+
µ

2
‖x− y‖2E ∀x, y ∈ Q,

(using strong convexity of f̄), and

f(x) ≤ f̄(x) + δ ≤ f̄(y) + 〈∇f̄(y), x− y〉+
L

2
‖x− y‖2E + δ ∀x, y ∈ Q.

(using Lipschitz continuity of ∇f̄), which proves that (f̄(y),∇f̄(y)) is a (δ, L, µ)-oracle
for f .

Finally, note that the above result can be readily extended to the case when the δ-lower
approximation f̄ is not necessarily smooth and strongly convex but is equipped with an
inexact (δ′, L, µ) oracle: we can then show that the inexact oracle of f̄ also constitutes an
inexact (δ + δ′, L, µ) oracle for f .

2.3 Strongly convex function with approximate function value
and approximate gradient

Let function f ∈ S1,1
µ(f),L(f)(Q) be endowed with an oracle that provides us at each point

y ∈ Q with an approximate function value |f(y)− f̃y| ≤ ∆1 and an approximate gradient∥∥∥∇f(y)− ∇̃fy
∥∥∥∗
E
≤ ∆2.

Let us prove that this very natural definition of approximate first-order information is
a particular case of (δ, L, µ) oracle.

As f is strongly convex with parameter µ(f), we have

f(x) ≥ f(y) + 〈∇̃f(y), x− y〉

+〈∇f(y)− ∇̃f(y), x− y〉+
µ(f)

2
‖x− y‖2E

≥ f(y) + 〈∇̃f(y), x− y〉 −∆2 ‖x− y‖E +
µ(f)

2
‖x− y‖2E

≥ f̃(y)−∆1 + 〈∇̃f(y), x− y〉+
µ(f)

4
‖x− y‖2E −

∆2
2

µ(f)

since ∆2 ‖x− y‖E ≤
∆2

2

µ(f) + µ(f)
4 ‖x− y‖

2
E .
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As ∇f is Lipschitz-continuous with constant L, we have

f(x) ≤ f(y) + 〈∇̃f(y), x− y〉

+〈∇f(y)− ∇̃f(y), x− y〉+
L(f)

2
‖x− y‖2E

≤ f(y) + 〈∇̃f(y), x− y〉+ ∆2 ‖x− y‖E +
L(f)

2
‖x− y‖2E

≤ f̃(y) + ∆1 + 〈∇̃f(y), x− y〉+ L(f) ‖x− y‖2E +
∆2

2

2L(f)

since ∆2 ‖x− y‖E ≤
∆2

2

2L(f) + L(f)
2 ‖x− y‖2E .

We conclude that(
fδ,L,µ(y) = f̃(y)−∆1 −

∆2
2

µ(f)
, gδ,L,µ(y) = ∇̃f(y)

)
define a (δ, L, µ) oracle for f where δ = 2∆1 +

∆2
2

µ(f) +
∆2

2

2L(f) , µ = µ(f)
2 and L = 2L(f).

In particular, contrarily to the non strongly convex case studied in [1], we see here
that boundedness of Q is not needed for an approximate gradient to fit with our definition
of inexact oracle.

2.4 Saddle-point functions

Let us now consider objective functions of the form

f(x) = max
u∈F

Ψ(x, u) = max
u∈F
{G(u) + 〈Au, x〉}

where F is a finite-dimensional vector space, endowed with the norm ‖.‖F , and A : F →
E∗ is a linear operator. We assume that G : F → R is

1. Strongly concave with parameter µ(G) i.e.

G(u) ≤ G(v) + 〈∇G(v), u− v〉 − µ(G)

2
‖u− v‖2F , ∀u, v ∈ F.

2. Smooth with a Lipschitz-continuous gradient with constant L(G)

G(u) ≥ G(v) + 〈∇G(v), u− v〉 − L(G)

2
‖u− v‖2F , ∀u, v ∈ F.

It is well-known that when −G ∈ S1,1
µ(G),L(G)(F ) then f ∈ S1,1

µ(f),L(f)(E) where µ(f) =

λmin(AAT )
L(G) and L(f) = λmax(AAT )

µ(G) . In particular, the condition numbers of the func-

tions f and G are linked by Q(f) = λmax(AAT )
λmin(AAT )

Q(G). However, if we want, at a point

z ∈ E, to compute the exact first-order information for f , we need to solve the sub-
problem maxu∈F Ψ(z, u) exactly since f(z) = Ψ(z, u∗z) and ∇f(z) = Au∗z where u∗z =
arg maxu∈F Ψ(z, u). In practice, we are typically only able to compute an approximate
solution uz ∈ F of this subproblem. In the following theorem, we give a natural condition
under which inexact resolution of the subproblems provides us with a (δ, L, µ)-oracle.

Theorem 2 Assume that G is strongly concave with parameter µ(G) and smooth with a
Lipschitz-continuous gradient with constant L(G). Let z ∈ E and assume that instead of
computing u∗z, the unique optimal solution of the subproblem maxu∈F Ψ(z, u), we compute
uz ∈ F such that:

Ψ(z, u∗z)−Ψ(z, uz) ≤ ξ.
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Then
(fδ,L,µ(z) = Ψ(z, uz)− ξ = G(uz) + 〈Auz, z〉 − ξ, gδ,L,µ(z) = Auz)

is a (δ, L, µ) oracle for f with δ = 3ξ, L = 2λmax(AAT )
µ(G) = 2L(f) and µ = λmin(AAT )

2L(G) =
1
2µ(f).

Proof. As Ψ(z, .) has a Lipschitz continuous gradient ∇2Ψ(z, u) = ∇G(u) + AT z with
constant L(G), we have (see Theorem 2.1.5. in [4]):

(
∥∥∇G(uz) +AT z

∥∥∗
F

)2 ≤ 2L(G)(Ψ(z, u∗z)−Ψ(z, uz)) ≤ 2L(G)ξ. (2.3)

• The Lipschitz-continuity of ∇G implies (see Lemma 1.2.3 in [4])

G(u) ≥ G(uz) + 〈∇G(uz), u− uz〉 −
L(G)

2
‖u− uz‖2E

= G(uz) + 〈−AT z, u− uz〉+ 〈∇G(uz) +AT z, u− uz〉

−L(G)

2
‖u− uz‖2F .

Therefore:

f(x) = max
u∈F
{G(u) + 〈Au, x〉}

≥ max
u∈F

[G(uz) + 〈−AT z, u− uz〉+ 〈∇G(uz) +AT z, u− uz〉

−L(G)

2
‖u− uz‖2F + 〈Au, x〉]

= G(uz) + 〈Auz, z〉+ 〈Auz, x− z〉+ max
u∈F

[〈A(u− uz), x− z〉

+〈∇G(uz) +AT z, u− uz〉 −
L(G)

2
‖u− uz‖2F ]

(2.3)

≥ fδ,L,µ(z) + ξ + 〈gδ,L,µ(z), x− z〉+ max
u∈F

[〈A(u− uz), x− z〉

−
√

2L(G)ξ ‖u− uz‖F −
L(G)

2
‖u− uz‖2F ].

But
√

2L(G)ξ ‖u− uz‖F ≤ ξ + L(G)
2 ‖u− uz‖2F and therefore:

f(x) ≥ fδ,L,µ(z) + 〈gδ,L,µ(z), x− z〉+ max
u∈F
{〈A(u− uz), x− z〉 − L(G) ‖u− uz‖2F }.

Since

max
u∈F
{〈A(u− uz), x− z〉 − L(G) ‖u− uz‖2F } =

1

4

∥∥AT (x− z)
∥∥2

F∗

L(G)

≥ 1

4

λmin(AAT )

L(G)
‖x− z‖2E

we obtain f(x) ≥ fδ,L,µ(z) + 〈gδ,L,µ(z), x− z〉+ λmin(AAT )
4L(G) ‖x− z‖2E .

• On the other hand, since G is strongly concave with parameter µ(G), we have:

G(u) ≤ G(u∗z) + 〈∇G(u∗z), u− z∗z 〉 −
µ(G)

2
‖u− u∗z‖

2
F

= G(u∗z) + 〈−AT z, u− z∗z 〉 −
µ(G)

2
‖u− u∗z‖

2
F
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(by definition of u∗z, we have: ∇G(u∗z) +AT z = 0.) Therefore:

f(x) = max
u∈F
{G(u) + 〈Au, x〉}

≤ max
u∈F
{G(u∗z) + 〈−AT z, u− u∗z〉 −

µ(G)

2
‖u− u∗z‖

2
F + 〈Au, x〉}

= G(u∗z) + 〈Au∗z, z〉+ 〈Au∗z, x− z〉

+ max
u∈F
{〈A(u− u∗z), x− z〉 −

µ(G)

2
‖u− u∗z‖

2
F }

= G(uz) + (G(u∗z)−G(uz)) + 〈Auz, z〉+ 〈Auz, x− z〉
+〈A(u∗z − uz), x〉+ max

u∈F
[〈A(u− uz), x− z〉

+〈A(uz − u∗z), x− z〉 −
µ(G)

2
‖u− u∗z‖

2
F ].

But ‖u− uz‖2F ≤ 2 ‖u− u∗z‖
2
F + 2 ‖uz − u∗z‖

2
F i.e.

‖u− u∗z‖
2
F ≥

1
2 ‖u− uz‖

2
F − ‖uz − u∗z‖

2
F . Therefore:

f(x) ≤ G(uz) + 〈Auz, z〉+ 〈Auz, x− z〉+G(u∗z)−G(uz)

+〈A(u∗z − uz), z〉+ max
u∈F

[〈A(u− uz), x− z〉 −
µ(G)

4
‖u− uz‖2F }

+
µ(G)

2
‖uz − u∗z‖

2
F .

Since

1. maxu∈F {〈A(u−uz), x−z〉−µ(G)
4 ‖u− uz‖2F } =

‖AT (x−z)‖2
F∗

µ(G) ≤ λmax(AAT )
µ(G) ‖x− z‖2E

2. G(u∗z)−G(uz) + 〈A(u∗z − uz), z〉 = Ψ(z, u∗z)−Ψ(z, uz) ≤ ξ
3. µ(G)

2 ‖uz − u∗z‖
2
F ≤ Ψ(z, u∗z)−Ψ(z, uz) ≤ ξ by strong concavity of Ψ(z, .),

we have:

f(x) ≤ G(uz) + 〈Auz, z〉+ 〈Auz, x− z〉+
λmax(AAT )

µ(G)
‖x− z‖2E + 2ξ

= fδ,L,µ(z) + 〈gδ,L,µ(z), x− z〉+
λmax(AAT )

µ(G)
‖x− z‖2E + 3ξ.

2.5 Uniformly convex functions with weaker level of smoothness

Let us show that the notion of (δ, L, µ)-oracle can be also useful for solving problems with
exact information but where the objective function is not necessarily strongly convex and
∇f not necessarily Lipschitz-continuous. Let function f be subdifferentiable on Q and
for each y ∈ Q, denote by g(y) an arbitrary element of the subdifferential ∂f(y).

We assume that

1. f is uniformly convex on Q with convexity parameters ρ ≥ 2 and κ > 0 i.e.:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− κ

2
α(1− α) ‖x− y‖ρE

for all x, y ∈ Q and ∀α ∈ [0, 1]. This condition leads to the following inequality:

f(x) ≥ f(y) + 〈g(y), x− y〉+
κ

2
‖x− y‖ρE , ∀x, y ∈ Q.
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2. f has an Hölder-continuous (sub)gradient on Q with parameters ν ∈ [0, 1] an M <
+∞ i.e.:

‖g(x)− g(y)‖∗E ≤M ‖x− y‖
ν
E , ∀x, y ∈ Q.

This condition leads to the following inequality:

f(x) ≤ f(y) + 〈g(y), x− y〉+
M

1 + ν
‖x− y‖1+ν

E , ∀x, y ∈ Q.

We denote this class of function by:

• U1,ρ,ν
κ,M (Q) when the function is also assumed to be differentiable (it is always the

case when ν > 0)

• U0,ρ,ν
κ,M (Q) when the function can be non-differentiable.

Remark 1 • When ν = 0, the function is typically nonsmooth with bounded variation
of the subgradients.

• When 0 < ν < 1, the function is weakly-smooth i.e. with a Hölder-continuous
gradient.

• When ν = 1, the function is smooth with a Lipschitz-continuous gradient.
In particular when ν > 0, the function is necessarily differentiable and we have

U1,ρ,ν
κ,M (Q) = U0,ρ,ν

κ,M (Q)

Remark 2 When ρ > 1 + ν, the class U0,ρ,ν
κ,M (E)(and therefore also U1,ρ,ν

κ,M (E)) is empty
since

κ

2
tρ ≥ M

1 + ν
t1+ν

for sufficiently large t ≥ 0.

Remark 3 U1,2,1
κ,M (Q) = S1,1

κ,M (Q).

We will prove in this section that functions f ∈ U0,ρ,ν
κ,M (Q), a (δ, L, µ)-oracle is available

for any value of δ > 0 i.e. that we can define quantities (fδ,L,µ(y), gδ,L,µ(y)) satisfying
inequalities 1.3.

• First, we prove that f(x) ≥ f(y) + 〈g(y), x− y〉+ κ
2 ‖x− y‖

ρ
E , ∀x, y ∈ Q implies

f(x) ≥ f(y) + 〈g(y), x− y〉+
µ

2
‖x− y‖2E − δ1, ∀x, y ∈ Q

where δ1 > 0 is arbitrary and some µ > 0. In order to obtain this implication, we
need to find a constant µ = µ(ρ, κ, δ1) such that:

µ

2
‖x− y‖2E − δ1 ≤

κ

2
‖x− y‖ρE , ∀x, y ∈ Q.

A sufficient condition is µ
2 t

2 − δ1 ≤ κ
2 t
ρ for all t ≥ 0. Therefore we will choose

µ = mint≥0{κtρ−2 + 2δ1t
−2}. The optimal solution of this minimization problem is

given by t∗ =
(

4δ1
κ(ρ−2)

) 1
ρ

and therefore

µ = µ(ρ, κ, δ1) = ρ

(
1

ρ− 2

) ρ−2
ρ

κ
2
ρ δ

ρ−2
ρ

1 21− 4
ρ .

In particular, when ρ = 2, we obtain µ = κ.
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• Second, in the subsection 2.3.c. in [1], we have proved that f(x) ≤ f(y) + 〈g(y), x−
y〉+ M

1+ν ‖x− y‖
1+ν
E implies

f(x) ≤ f(y) + 〈g(y), x− y〉+
L

2
‖x− y‖2E + δ2

where δ2 is arbitrary and L = M
(
M
2δ2

1−ν
1+ν

) 1−ν
1+ν

. In particular when ν = 1, we obtain

L = M .

We obtain the following theorem:

Theorem 3 Assume that f ∈ U0,ρ,ν
κ,M (Q). Let 0 < δ1 and 0 < δ2 be arbitrary constants

and define δ = δ1 + δ2, µ = ρ
(

1
ρ−2

) ρ−2
ρ

κ
2
ρ δ

ρ−2
ρ

1 21− 4
ρ and L = M

(
M
2δ2

1−ν
1+ν

) 1−ν
1+ν

. Then

(fδ,L,µ(y) = f(y)− δ1, gδ,L,µ(y) = g(y) ∈ ∂f(y))

defines a (δ, L, µ) oracle for f .

3 Primal gradient method with (δ, L, µ)-oracle

Let us now study the behavior of first-order methods, initially developed for smooth
strongly convex problems, but used here with a (δ, L, µ)-oracle.

We start with the Primal Gradient Method. One important property of this method
is that it does not use the strongly convex parameter µ explicitly in the scheme. The
Primal Gradient Method for strongly convex problems looks exactly the same as in the
convex case.

Therefore, the Primal Gradient Method when used with a (δ, L, µ) oracle looks exactly
the same that when used with a (δ, L)-oracle in [1].

Algorithm 1 Primal Gradient Method (PGM) with (δ, L, µ) oracle

1: Choose x0 ∈ Q
2: for k = 0 : . . . do
3: Obtain (fδ,L,µ(xk), gδ,L,µ(xk)).
4: Compute xk+1 = arg minx∈Q{〈∇gδ,L,µ(xk), x− xk〉+ L

2 ‖x− xk‖
2
E}

5: end for

Even if the scheme is the same, the fact that we use a (δ, L, µ)-oracle instead of a
(δ, L)-oracle can accelerate significantly the convergence rate:

Theorem 4 Assume that f is endowed with a (δ, L, µ)-oracle with µ > 0, then the
sequence yk = arg minx1,...,xk f(xi), generated by the Primal Gradient Method satisfies

f(yk)− f∗ ≤ LR2

2
exp

(
−k µ

L

)
+ δ

where R = ‖x− x0‖E .

Proof. Denote rk = ‖xk − x∗‖E and fk = fδ,L,µ(xk), gk = gδ,L,µ(xk). We have

r2
k+1 = ‖xk+1 − x∗‖2E = r2

k + 2〈B(xk+1 − xk), xk+1 − x∗〉 − ‖xk+1 − xk‖2E (3.1)
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Using the optimality condition of the problem defining xk+1:

〈gk + LB(xk+1 − xk), x− xk+1〉 ≥ 0 ∀x ∈ Q

we have

〈B(xk+1 − xk), xk+1 − x∗〉 ≤
1

L
〈gk, x∗ − xk+1〉.

We obtain

r2
k+1 ≤ r2

k +
2

L
〈gk, x∗ − xk+1〉 − ‖xk+1 − xk‖2E

= r2
k +

2

L
〈gk, x∗ − xk〉 −

2

L

[
〈gk, xk+1 − xk〉+

L

2
‖xk+1 − xk‖2E

]
(1.3)

≤ r2
k +

2

L
〈gk, x∗ − xk〉 −

2

L
[f(xk+1)− fk − δ]

(1.3)

≤ r2
k +

2

L

[
f(x∗)− fk −

µ

2
‖xk − x∗‖2E

]
− 2

L
[f(xk+1)− fk − δ]

=
(

1− µ

L

)
r2
k+1 +

2

L
[f(x∗)− f(xk+1) + δ] .

Therefore, we have

r2
k+1 ≤

(
1− µ

L

)
r2
k +

2

L
[f(x∗)− f(xk+1) + δ]

≤
(

1− µ

L

)((
1− µ

L

)
r2
k−1 +

2

L
[f(x∗)− f(xk) + δ]

)
+

2

L
[f(x∗)− f(xk+1) + δ]

≤
(

1− µ

L

)k
r2
0 +

2

L

k∑
i=0

(
1− µ

L

)i
(f(x∗)− f(xk+1−i) + δ).

and we obtain

2

L

k∑
i=0

(
1− µ

L

)i
(f(xk+1−i)− f(x∗)) ≤

(
1− µ

L

)k+1

r2
0 +

2

L

k∑
i=0

(
1− µ

L

)i
δ.

Therefore, using the definition of yk+1 and the fact that
2
L

∑k
i=0

(
1− µ

L

)i
= 2

µ

(
1− (1− µ

L )k+1
)

we conclude that

f(yk+1)− f∗ ≤ µ

2

(
1− µ

L

)k+1

1−
(
1− µ

L

)k+1
r2
0 + δ

≤ L

2

(
1− µ

L

)k+1

r2
0 + δ

≤ Lr2
0

2
exp

(
−(k + 1)

µ

L

)
+ δ.

Remark 4 When δ = 0, we retrieve the well-known behavior of the Primal Gradient

Method in the strongly convex case, with a complexity of order Θ
(
L
µ ln

(
LR2

ε

))
.
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Remark 5 As a (δ, L, µ) oracle is also a (δ, L)-oracle and as the parameter µ is not used
during the scheme, the upper-bound

f(yk)− f∗ ≤ LR2

2k
+ δ (3.2)

obtained in [1], is still available. Therefore, the sequence yk generated by the primal
gradient method actually satisfies

f(yk)− f∗ ≤ LR2

2
min

(
1

k
, exp

(
−k µ

L

))
+ δ.

In conclusion, when we apply the primal gradient method to a function endowed with
a (δ, L, µ) oracle, there is no error accumulation, and the upper bound for the objective
function accuracy decreases with k and asymptotically tends to δ. If we want an accuracy
of ε for the objective function, we need to perform a number of iterations k such that

k = min

(
Θ

(
LR2

ε

)
,Θ

(
L

µ
log

(
LR2

ε

)))
with an oracle accuracy δ = Θ(ε). As in the non strongly convex case, studied in [1], the
PGM does not suffer from errors accumulation.

4 Dual gradient method with (δ, L, µ)-oracle

Let us now consider the Dual Gradient Method. This method has been introduced in [6]
for smooth convex problems with exact oracle. In [1], we have studied its behavior when
used with a (δ, L)-oracle.

In the strongly convex case, it is necessary to modify slightly the method in order to
take advantage of the strong convexity. We propose here such modification and study the
behavior of this modified method when used with a (δ, L, µ) oracle.

Let {αk}k≥0 be a sequence of positive reals such that:

α0 =
L

L− µ
(4.1)

(L− µ)αk+1 = Akµ+ L (4.2)

where Ak =
∑k
i=0 αi.

Algorithm 2 Dual Gradient Method (DGM) with (δ, L, µ) oracle

1: Choose x0 ∈ Q
2: for k = 0 : . . . do
3: Obtain (fδ,L,µ(xk), gδ,L,µ(xk)).
4: Compute

wk = arg min
x∈Q
{〈gδ,L,µ(xk), x− xk〉+

L

2
‖x− xk‖2E} (4.3)

5: Compute

xk+1 = arg min
x∈Q

[
k∑
i=0

αi[〈gδ,L,µ(xi), x− xi〉+
µ

2
‖x− xi‖2E ] +

L

2
‖x− x0‖2E

]
.

6: end for
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Lemma 1 For any k ≥ 0 we have

k∑
i=0

αi[f(wi)− f∗] ≤ L
2 ‖x0 − x∗‖2E +

k∑
i=0

αiδ (4.4)

Proof. For k ≥ 0, denote fk = fδ,L,µ(xk), gk = gδ,L,µ(xk), and ψ∗k = min
x∈Q

ψk(x) where

ψk(x) =
k∑
i=0

αi[fi + 〈gi, x− xi〉+ µ
2 ‖x− xi‖

2
E ] + L

2 ‖x− x0‖2E .

In view of the first inequality in (1.3), we have for all x ∈ Q

ψ∗k ≤ ψk(x) ≤
∑k
i=0 αif(x) + L

2 ‖x− x0‖2E . (4.5)

Let us prove that ψ∗k ≥
k∑
i=0

αi[f(wi)− δ], ∀k ≥ 0.

Indeed, this inequality is valid for k = 0:

α0f(w0)
(1.3)

≤ α0[f0 + 〈g0, w0 − x0〉+
L

2
‖w0 − x0‖2E + δ]

(4.3)
= min

y∈Q
α0[f0 + 〈g0, y − x0〉+

L

2
‖y − x0‖2E ] + α0δ

≤ min
y∈Q
{α0[f0 + 〈g0, y − x0〉+

µ

2
‖y − x0‖2E ] +

L

2
‖y − x0‖2E}+ α0δ

= ψ∗0 + α0δ.

Assume it is valid for some k ≥ 1. Since Ψk(x) is strongly convex with parameter∑k
i=0 αiµ+ L = Akµ+ L, we have:

ψk(x) ≥ ψ∗k + Akµ+L
2 ‖x− xk+1‖2E , x ∈ Q

Therefore,

ψ∗k+1 = min
x∈Q

{
ψk(x) + αk+1[fk+1 + 〈gk+1, x− xk+1〉+

µ

2
‖x− xk+1‖2E ]

}
≥ ψ∗k + min

x∈Q
{αk+1[fk+1 + 〈gk+1, x− xk+1〉+

µ

2
‖x− xk+1‖2E ]

+
Akµ+ L

2
‖x− xk+1‖2E}

≥ ψ∗k + αk+1 min
x∈Q
{fk+1 + 〈gk+1, x− xk+1〉+

L

2
‖x− xk+1‖2E}

since αk+1µ+Akµ+ L = Lαk+1.
And we obtain finally :

ψ∗k+1

(4.3),(1.3)

≥ ψ∗k + αk+1(f(wk+1)− δ).

Hence, using our inductive assumption, we have proved that ψ∗k ≥
k∑
i=0

αi[f(wi)− δ] for all

k ≥ 0. To conclude, we combine this fact with inequality (4.5) for x = x∗.

Defining now the approximate solution as yk = arg mini=0,...,k f(wi) or yk =
∑k
i=0 αiwi∑k
i=0 αi

we obtain:

f(yk)− f∗ ≤
L ‖x0 − x∗‖2E

2
∑k
i=0 αi

+ δ =
LR2

2Ak
+ δ. (4.6)

It remains therefore to obtain a lower bound for Ak:
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Lemma 2 The sequence {Ak}k≥0 defined by the recurrence (4.1) and (4.2) satisfies

Ak =

k+1∑
i=1

(
L

L− µ

)i
and therefore

1. Ak = k + 1, ∀k ≥ 0 if µ = 0

2. Ak ≥
(

L
L−µ

)k+1

, ∀k ≥ 0 if µ > 0.

Proof. We have

(L− µ)αk+1 = Akµ+ L⇔ (L− µ)Ak+1 = L(Ak + 1)

and therefore

Ak+1 =
L

L− µ
(Ak + 1).

As A0 = α0 = L
L−µ , we conclude that

Ak =

k+1∑
i=1

(
L

L− µ

)i
.

We obtain finally the following theorem:

Theorem 5 The dual gradient method applied to a function f endowed with a (δ, L, µ)-
oracle generates a sequence {wk}k≥0 such that yk = arg mini=0,...,k f(wi) and yk =∑k

i=0 αiwi∑k
i=0 αi

satisfy

f(yk)− f∗ ≤ LR2

2(k + 1)
+ δ, if µ = 0

and

f(yk)− f∗ ≤ LR2

2

(
1− µ

L

)k+1

+ δ ≤ LR2

2
exp

(
−(k + 1)

µ

L

)
+ δ

if µ > 0.

Remark 6 When µ = 0, we have αi = 1 ∀i ≥ 0 and this method corresponds to the
dual gradient method introduced in [6] and for which the behavior when used with a
(δ, L) = (δ, L, 0) has been already established in [1].

Remark 7 In the case µ > 0, the sequence Ak(µ) = Ak satisfies the recurrence

Ak+1(µ) =
L

L− µ
Ak(µ) +

L

L− µ

and in the case µ = 0, the sequence Ak(0) satisfies the recurrence

Ak+1(0) = Ak(0) + 1.

Clearly Ak(µ) ≥ Ak(0) for all k ≥ 1 and

f(yk)− f∗ ≤ LR2

2Ak(µ)
+ δ ≤ LR2

2Ak(0)
+ δ.
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Therefore the upper-bound

f(yk)− f∗ ≤ LR2

2(k + 1)
+ δ

is also available in the case µ > 0 and we have:

f(yk)− f∗ ≤ min

(
LR2

2(k + 1)
, LR2 exp

(
−k µ

L

))
+ δ.

Remark 8 When δ = 0, the availability of a (0, L, µ) oracle for a function f means simply
that f ∈ S1,1

µ,L(Q). To the best of our knowledge, it is the first time that the dual gradient
method is adapted to the strongly convex case.

Since we obtain the same convergence results for both primal and dual gradient meth-
ods, we will refer to both as Gradient Methods (GM) in the rest of this paper.

5 Fast gradient method with (δ, L, µ)-oracle

The fast gradient method (at least the version that we consider in this paper) has been
introduced in [5]. In [1], we have studied the behavior of this scheme when used with a
(δ, L)-oracle instead of the exact one. In this section, we adapt this fast-gradient method
to the strongly convex case and we apply this scheme to a convex function f endowed
with a (δ, L, µ)-oracle.

5.1 The method

Let {αk}k≥0 be a sequence of reals such that

L+ µAk =
Lα2

k+1

Ak+1
, α0 = 1 (5.1)

where Ak =
∑k
i=0 αi. Define τk = αk+1

Ak+1
, k ≥ 0. The condition on the sequence {αk}∞k=0

is equivalent with
L+ µAk
Ak+1

= Lτ2
k . (5.2)

Let d(x) be a prox-function i.e. a differentiable and strongly convex function on Q,
and let x0 = arg min

x∈Q
d(x) be its prox-center. Translating and scaling d if necessary, we

can always ensure that

d(x0) = 0, d(x) ≥ 1

2
‖x− x0‖2E , ∀x ∈ Q. (5.3)

For a particular choice of the prox-function, the FGM used with a (δ, L, µ)-oracle looks
as follows
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Algorithm 3 Fast Gradient Method (FGM) with (δ, L, µ) oracle

1: Choose x0 = minx∈Q d(x)
2: for k = 0 : . . . do
3: Obtain (fδ,L,µ(xk), gδ,L,µ(xk)).
4: Compute

yk = arg min
x∈Q
{〈gδ,L,µ(xk), x− xk〉+

L

2
‖x− xk‖2E} (5.4)

5: Compute zk = arg min
x∈Q
{Ld(x) +

k∑
i=0

αi[〈gδ,L,µ(xi), x− xi〉+ µ
2 ‖x− xi‖

2
E ]}

6: Define xk+1 = τkzk + (1− τk)yk.
7: end for

5.2 Convergence rate

Denote

ψ∗k = min
x∈Q
{Ld(x) +

k∑
i=0

αi[fδ,L,µ(xi) + 〈gδ,L,µ(xi), x− xi〉+
µ

2
‖x− xi‖2E ]}.

Lemma 3 For all k ≥ 0, we have Akf(yk) ≤ ψ∗k + Ek with Ek =
k∑
i=0

Aiδ.

Proof. Denote fk = fδ,L,µ(xk), and gk = gδ,L,µ(xk). For k = 0, we have

ψ∗0 = min
x∈Q

{
Ld(x) + α0[f0 + 〈g0, x− x0〉+ µ

2 ‖x− x0‖2E ]
}

(5.3)

≥ min
x∈Q

{
f0 + 〈g0, x− x0〉+ L

2 ‖x− x0‖2
} (1.3)

≥ [f(y0)− δ].

since α0 = 1.
Assume now that the statement of the lemma is true for some k ≥ 0. Optimality

condition for the optimization problem defining zk implies

〈∇Ld(zk) +
∑k
i=0 αigi +

∑k
i=0 αiµB(zk − xi), x− zk〉 ≥ 0, ∀x ∈ Q.

Hence, in view of strong convexity of d,

Ld(x) ≥ Ld(zk) + 〈L∇d(zk), x− zk〉+
L

2
‖x− zk‖2E

≥ Ld(zk) +

k∑
i=0

αi〈gi, zk − x〉

+

k∑
i=0

αiµ〈B(zk − xi), zk − x〉+
L

2
‖x− zk‖2E .
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Thus, we have for all x ∈ Q:

Ld(x) +

k+1∑
i=0

αi[fi + 〈gi, x− xi〉+
µ

2
‖x− xi‖2E ]

≥ Ld(zk) +

k∑
i=0

αi[fi + 〈gi, zk − xi〉] +
L

2
‖x− zk‖2E

+

k∑
i=0

αiµ〈B(zk − xi), zk − x〉+

k∑
i=0

αiµ

2
‖x− xi‖2E

+αk+1[fk+1 + 〈gk+1, x− xk+1〉+
µ

2
‖x− xk+1‖2E ].

But:

〈B(zk − xi), zk − x〉 =
1

2
‖zk − xi‖2E +

1

2
‖zk − x‖2E −

1

2
‖x− xi‖2E

and we obtain:

Ld(x) +

k+1∑
i=0

αi[fi + 〈gi, x− xi〉+
µ

2
‖x− xi‖2E ]

≥ Ld(zk) +

k∑
i=0

αi[fi + 〈gi, zk − xi〉+
µ

2
‖zk − xi‖2E ]

+
L+Akµ

2
‖zk − x‖2E + +αk+1[fk+1 + 〈gk+1, x− xk+1〉+

µ

2
‖x− xk+1‖2E ].

which implies:

ψ∗k+1 ≥ ψ∗k + min
x∈Q
{L+µAk

2 ‖x− zk‖2E + αk+1[fk+1 + 〈gk+1, x− xk+1〉

+µ
2 ‖x− xk+1‖2E ]}.

On the other hand, using our recurrence assumption Akf(yk) ≤ ψ∗k + Ek, we have

ψ∗k + αk+1[fk+1 + 〈gk+1, x− xk+1〉+
µ

2
‖x− xk+1‖2E ]

≥ Akf(yk)− Ek + αk+1[fk+1 + 〈gk+1, x− xk+1〉+
µ

2
‖x− xk+1‖2E ]

(1.3)

≥ Ak[fk+1 + 〈gk+1, yk − xk+1〉+
µ

2
‖yk − xk+1‖2E ]− Ek

+αk+1[fk+1 + 〈gk+1, x− xk+1〉+
µ

2
‖x− xk+1‖2E ]

= Ak+1fk+1 + 〈gk+1, Ak(yk − xk+1) + αk+1(x− xk+1)〉

−Ek +
Akµ

2
‖yk − xk+1‖2E +

αk+1µ

2
‖x− xk+1‖2E .

Taking into account that

Ak(yk − xk+1) + αk+1(x− xk+1)

= Akτk(yk − zk) + αk+1x− αk+1τkzk − αk+1(1− τk)yk = αk+1(x− zk),

we obtain

ψ∗k + αk+1[fk+1 + 〈gk+1, x− xk+1〉+
µ

2
‖x− xk+1‖2E ]

≥ Ak+1fk+1 + αk+1〈gk+1, x− zk〉 − Ek.
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Therefore,

ψ∗k+1 ≥ Ak+1fk+1 − Ek + min
x∈Q
{L+µAk

2 ‖x− zk‖2E + αk+1〈gk+1, x− zk〉}

= Ak+1

[
fk+1 + min

x∈Q
{L+µAk

2Ak+1
‖x− zk‖2E + τk〈gk+1, x− zk〉}

]
− Ek

(5.2)
= Ak+1

[
fk+1 + minx∈Q{ τ

2
kL
2 ‖x− zk‖

2
E + τk〈gk+1, x− zk〉}

]
− Ek.

For x ∈ Q, define y = τkx+ (1− τk)yk. Since y − xk+1 = τk(x− zk), we obtain

min
x∈Q

{
τ2
kL
2 ‖x− zk‖

2
E + τk〈gk+1, x− zk〉

}
= min

y

{
L
2 ‖y − xk+1‖2E + 〈gk+1, y − xk+1〉 : y ∈ τkQ+ (1− τk)yk

}
≥ min

y∈Q

{
L
2 ‖y − xk+1‖2E + 〈gk+1, y − xk+1〉

}
.

(5.5)

Therefore,we have

ψ∗k+1 ≥ Ak+1

[
fk+1 + min

y∈Q
{L2 ‖y − xk+1‖2 + 〈gk+1, y − xk+1〉}

]
− Ek

(5.4),(1.3)

≥ Ak+1f(yk+1)− Ek −Ak+1δ,

and we get Ak+1f(yk+1) ≤ ψk+1 + Ek+1 with Ek+1 = Ek +Ak+1δ.
As a direct consequence of this lemma, we obtain

Theorem 6 For all k ≥ 0, we have f(yk)− f∗ ≤ 1
Ak

(
Ld(x∗) +

∑k
i=0Aiδ

)
.

Proof. Denote fi = fδ,L,µ(xi), and gi = gδ,L,µ(xi). Then

ψ∗k = min
x∈Q

{
Ld(x) +

k∑
i=0

αi[fi + 〈gi, x− xi〉+ µ
2 ‖x− xi‖

2
E ]

}

≤ Ld(x∗) +
k∑
i=0

αi[fi + 〈gi, x∗ − xi〉+ µ
2 ‖x

∗ − xi‖2E ]

(1.3)

≤ Ld(x∗) +Akf(x∗).

The proof now simply follows from the recurrence established in Lemma 3.

It remains to estimate Ak and
∑k
i=0 Ai
Ak

. More precisely, in order to obtain an explicit
upper-bound for the convergence rate of this method, we need

1. A lower-bound for Ak

2. An upper-bound for
∑k
i=0 Ai
Ak

.

Concerning the lower bound for Ak, we have the following result

Lemma 4 The sequence {Ak}k≥0 defined by the recurrence ( 5.1) satisfies

Ak ≥
(

1 +
1

2

√
µ

L

)2k

∀k ≥ 0.
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Proof. We have:

µAkAk+1 ≤ L(Ak+1 −Ak)2 = L(A
1/2
k+1 −A

1/2
k )2(A

1/2
k+1 +A

1/2
k )2

≤ 4LAk+1(A
1/2
k+1 −A

1/2
k )2.

Therefore
(
1 + 1

2

√
µ
L

)
A

1/2
k ≤ A1/2

k+1 which implies Ak ≥
(
1 + 1

2

√
µ
L

)2k
.

Concerning
∑k
i=0 Ai
Ak

, the cumulative effect of the successive oracle errors, we begin
with the following uniform upper-bound:

Lemma 5 The sequence {Ak}k≥0 defined by the recurrence ( 5.1) satisfies

∑k
i=0Ai
Ak

≤ 1 +
2
√

L
µ√

µ
L +

√
µ
L + 4

≤ 1 +

√
L

µ
∀k ≥ 0.

Proof. We first note that Ak satisfies the following recurrence equation:

A2
k+1 −

(
1 +Ak

(µ
L

)
+ 2Ak

)
Ak+1 +A2

k = 0

or equivalently:

Ak+1 =

(
1 +Ak

(
µ
L

)
+ 2Ak

)
+

√(
1 +Ak

(
µ
L

)
+ 2Ak

)2 − 4A2
k

2
.

For our analysis, we consider also the sequence defined by the recurrence µÃk = L(Ãk+1−Ãk)2

Ãk+1

or equivalently Ãk+1 = Ãk

(
µ
L+
√

µ
L

√
µ
L+4

2 + 1

)
. We have clearly Ak+1

Ak
≥ Ãk+1

Ãk
∀k ≥ 0

and therefore Ak
Ai
≥ Ãk

Ãi
∀i < k, ∀k ≥ 1. We conclude that:

∑k
i=0Ai
Ak

≤
∑k
i=0 Ãi

Ãk
.

On the other hand, if we assume that Ã0 = A0 = 1, we have Ãk = Ck where C =(
µ
L+
√

µ
L

√
µ
L+4

2 + 1

)
. Therefore, we have

∑k
i=0 Ãi =

∑k
i=0 C

i = Ck+1−1
C−1 and

∑k
i=0 Ãi

Ãk
=

Ck+1 − 1

C − 1

1

Ck
=

Ck+1 − 1

Ck+1 − Ck

≤ C

C − 1
=

µ
L +

√
µ
L

√
µ
L + 4 + 2

µ
L +

√
µ
L

√
µ
L + 4

= 1 +
2
√

L
µ√

µ
L +

√
µ
L + 4

≤ 1 +

√
L

µ
.

We conclude that:∑k
i=0Ai
Ak

≤
∑k
i=0 Ãi

Ãk
≤ 1 +

2
√

L
µ√

µ
L +

√
µ
L + 4

≤ 1 +

√
L

µ
.
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A pessimistic but also an optimistic interpretation of this result can be done:

• The FGM is worse than the GM concerning the effect of the oracle errors. Contrarily
to the gradient method for which the oracle accuracy δ can be chosen of the same
level that the desired final accuracy, the fast-gradient method suffers from an increase
of error. The cumulative error (in the convergence rate for f(yk) − f∗) coming
from the successive oracle errors is bigger than each individual oracle error δ. This
bad phenomenon does not come from our analysis but is a unavoidable problem
of any fast first-order method for smooth strongly convex problems as we will see
in Theorem 8. More precisely, for any optimal method in smooth strongly convex
optimization, the total effect on the convergence rate of the successive oracle errors
cannot be bounded by a uniform quantity ( i.e. independent of k) having a better

dependence in the condition number than Θ
(√

L
µ δ
)

.

• When µ > 0, the FGM does not suffer from an unbounded accumulation of errors.
When µ = 0, i.e. when the function is endowed with a (δ, L)-oracle, we have estab-
lished in [1] that the fast gradient method suffers from an accumulation of oracle
errors with rate Θ(kδ), making the method asymptotically divergent. When µ > 0,

we can bound the total effect of the oracle errors by a quantity of order Θ
(√

L
µ δ
)

that does not depend of k. This method is not divergent, the error on the function

value converges to a limit smaller than
(

1 +
√

L
µ

)
δ.

Of course, the cumulative effect of the oracle errors does not reach the level Θ
(√

L
µ δ
)

from the very first iterations. In fact, we will prove now that the effect of the oracle errors

is always less undesirable in the case µ > 0 than in the case µ = 0. We can bound
∑k
i=0 Ai
Ak

by an uniform quantity ( impossible when µ = 0) but also by the quantity of order Θ(kΘ)
available in the case µ = 0:

Lemma 6 Let µ > 0. The sequences {Ak(µ)}k≥0 and {Ak(0)}k≥0 defined by the recur-
rences:

L+ µAk(µ) =
L(Ak+1(µ)−Ak(µ))2

Ak+1(µ)
, A0(µ) = 1

Ak+1(0) = (Ak+1(0)−Ak(0))2, A0(0) = 1

satisfy: ∑k
i=0Ai(µ)

Ak(µ)
≤
∑k
i=0Ai(0)

Ak(0)
.

In order to prove this result, we first establish the following lemma:

Lemma 7 For all µ > 0, we have: 1
Ak(µ) + µ

L ≥
1

Ak(0) i.e.: Ak(0) ≥ LAk(µ)
L+Ak(µ)µ .

Proof. • It is true for k = 0. Indeed as A0(0) = A0(µ) = 1, we have

1

A0(µ)
+
µ

L
≥ 1

A0(0)
.
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• Assume it is true for k ≥ 0. We have:

Ak+1(0) =
1 + 2Ak(0) +

√
(1 + 2Ak(0))

2 − 4Ak(0)2

2

=
1 + 2Ak(0) +

√
1 + 4Ak(0)

2

≥
1 + 2LAk(µ)

L+µAk(µ) +
√

1 + 4LAk(µ)
L+µAk(µ)

2

=
L+ µAk(µ) + 2LAk(µ)

2(L+ µAk(µ))

+

√
(L+Ak(µ)µ)2 + 4LAk(µ)(L+Ak(µ)µ)

2(L+ µAk(µ))

=
L+ (µ)Ak(µ) + 2LAk(µ)

2(L+ µAk(µ))

+

√
(L+Ak(µ)µ+ 2L2Ak(µ))

2 − 4L2Ak(µ)2

2(L+Ak(µ)µ)

=
LAk+1(µ)

L+ µAk(µ)

≥ LAk+1(µ)

L+ µAk+1(µ)
.

since Ak+1(µ) ≥ Ak(µ).

We are now able to give the proof of the Lemma 6:

Proof. We have:

Ak+1(0)

Ak(0)
=

1
Ak(0) + 2 +

√(
1

Ak(0) + 2
)2

− 4

2

and

Ak+1(µ)

Ak(µ)
=

1
Ak(µ) + µ

L + 2 +

√(
1

Ak(µ) + µ
L + 2

)2

− 4

2
.

Therefore as
1

Ak(0)
≤ 1

Ak(µ)
+
µ

L

using Lemma 7, we have:

Ak+1(0)

Ak(0)
≤ Ak+1(µ)

Ak(µ)
, ∀k ≥ 0.

As a consequence, we obtain:

Ak(0)

Ai(0)
≤ Ak(µ)

Ai(µ)
, ∀0 ≥ i < k

and therefore ∑k
i=0Ai(µ)

Ak(µ)
≤
∑k
i=0Ai(0)

Ak(0)
.
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Remark 9 The behavior of the FGM in the case µ > 0 is never worse than in the case
µ = 0. This is true for the rate of error accumulation, as we have seen in the Theorem 6,
but also for the convergence rate in the exact case (i.e. the first term of the convergence
rate, the term that does not depend on δ). Indeed, since Ak(µ) ≥ Ak(0) for all k ≥ 0, the

first term in the convergence rate of the FGM i.e. Ld(x∗)
Ak(µ) can be bounded by Ld(x∗)

(1+ 1
2

√
µ
L )

2k as

we have seen in the Theorem 4 but also by the upper-bound Ld(x∗)
Ak(0) = Θ

(
LR2

k2

)
available

in the case µ = 0 (see [1]).

Remark 10 The fast gradient method presented here is compatible with the case µ = 0
but is not completely equivalent in the choice of the sequence {αi}i≥0 with the version
analyzed in [1]. However, the two methods present the same rate of convergence and the
same rate of errors accumulation. More precisely, in the FGM presented here, we have

Ak+1(0) = (Ak+1(0)−Ak(0))2

= (Ak+1(0)1/2 −Ak(0)1/2)2(Ak+1(0)1/2 +Ak(0)1/2)2

≤ 4Ak+1(0)(Ak+1(0)1/2 −Ak(0)1/2)2

and therefore:

Ak+1(0)1/2 ≥ 1

2
+Ak(0)1/2

which implies:

Ak+1(0) ≥ (k + 1)2

4
.

Furthermore, it is possible to show that∑k
i=0Ai(0)

Ak(0)
≤ 1

3
k + 2.4.

We conclude that

f(yk)− f∗ ≤ 4Ld(x∗)

k2
+ (

1

3
k + 2.4)δ

and we retrieve the classical behavior of a fast-gradient method when used with a (δ, L) =
(δ, L, 0)-oracle (see [1]):

• A needed number of iterations in Θ

(√
LR2

ε

)
• A needed oracle accuracy of order at least δ = Θ

(
ε3/2

L1/2R

)
.

Now we can obtain the following convergence rate for the fast gradient method using
a (δ, L, µ)-oracle

Theorem 7 The fast gradient method applied to a function f endowed with a (δ, L, µ)-
oracle generates a sequence {yk}k≥1 satisfying:

f(yk)− f∗ ≤ min

(
4Ld(x∗)

k2
, Ld(x∗) exp

(
−k

2

√
µ

L

))
+ min

(
(
1

3
k + 2.4),

(
1 +

√
L

µ

))
δ.



April 22, 2013 23

Proof. Using the Lemmas 4 and 6 and the remarks 9 and 10 in the convergence rate given
by the Theorem 6, we obtain

f(yk)− f∗ ≤ min

(
4Ld(x∗)

k2
,

Ld(x∗)

(1 + 1
2

√
µ
L )2k

)
+ min

(
(
1

3
k + 2.4),

(
1 +

√
L

µ

))
δ.

As for x ∈ [0, 1
4 ], we have that log(1 + 2x) ≥ x:

1

(1 + 1
2

√
µ
L )2k

= exp

(
−2k log

(
1 +

1

2

√
µ

L

))
≤ exp

(
−k

2

√
µ

L

)
.

We conclude that

f(yk)− f∗ ≤ min

(
4Ld(x∗)

k2
, Ld(x∗) exp

(
−k

2

√
µ

L

))
+ min

(
(
1

3
k + 2.4),

(
1 +

√
L

µ

))
δ.

5.3 Oracle accuracy fixed: Best reachable target accuracy using
the FGM

We have seen that, contrarily to the GM, the FGM suffers from a problem of error increase.
The extra error in the convergence rate, due to the (δ, L, µ) oracle, is not δ but something

of order min
(
kδ,
√

L
µ δ
)
. As a consequence, the best possible level of accuracy δ cannot

be reached by the FGM. In this section, we are interested in the best accuracy ε that we
can obtain for f(yk)− f∗, using the FGM with a (δ, L, µ) oracle.

We ensure here that δ, L, µ and R are fixed quantities. The only degree of freedom
that we have is the number of iterations k that we perform. In Theorem 7, we have
obtained the following model for the convergence rate of the FGM when applied to a
function endowed with a (δ, L, µ) oracle:

f(yk)− f∗ ≤ F (k) := min (F1(k), F2(k), F3(k), F4(k))

where

1. F1(k) = 4Ld(x∗)
k2 +

(
1
3k + 2.4

)
δ

2. F2(k) = 4Ld(x∗)
k2 +

(
1 +

√
L
µ

)
δ

3. F3(k) = Ld(x∗) exp
(
−k2
√

µ
L

)
+
(

1
3k + 2.4

)
δ

4. F4(k) = Ld(x∗) exp
(
−k2
√

µ
L

)
+
(

1 +
√

L
µ

)
δ.

The minimum of F1(k) is reached at k∗1 = Θ
(
L1/3R2/3

δ1/3

)
and F ∗1 = F1(k∗1) = Θ

(
L1/3R2/3δ2/3

)
.

The minimum of F2(k), F ∗2 = Θ
(√

L
µ δ
)

, is reached at the limit. However we can

obtain accuracy of the same order after k∗2 = Θ
(

(Lµ)1/4R
δ1/2

)
iterations.
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The minimum of F3(k) is reached at k∗3 = Θ
(√

L
µ log

(√
LµR2

δ

))
and F ∗3 = F3(k∗3) =

Θ
(√

L
µ δ
(

log
(√

LµR2

δ

)
+ 1
))

.

The minimum of F4(k), F ∗4 = Θ
(√

L
µ δ
)

is reached at the limit. However we can

obtain accuracy of the same order after k∗4 = Θ
(√

L
µ log

(√
LµR2

δ

))
iterations.

We conclude that the best reachable accuracy by the FGM is of order min{F ∗1 , F ∗4 } =

min{Θ(L1/3R2/3δ2/3),Θ
(√

L
µ δ
)
}. More precisely, we can consider two different situa-

tions:

• A) The condition number Q = L
µ is sufficiently small and/or the oracle accuracy δ

is sufficiently small and/or R is sufficiently big such that F ∗4 = Θ
(√

L
µ δ
)
≤ F ∗1 =

Θ
(
L1/3R2/3δ2/3

)
i.e. δ ≤ Θ

(
R2µ3/2

L1/2

)
.

In this situation, we can gain from the fact that µ > 0 and reach a level of ac-

curacy Θ
(√

L
µ δ
)

better than the best level reachable in the case µ = 0 (i.e.

Θ
(
L1/3R2/3δ2/3

)
). The number of iterations needed in order to reach this accu-

racy is of order Θ
(√

L
µ log

(√
LµR2

δ

))
.

Remark 11 We also can reach the level Θ(L1/3R2/3δ2/3) and the needed number

of iterations is Θ
(√

L
µ log

(
L2/3R4/3

δ2/3

))
. This number of iterations is smaller or of

the same order as Θ
(
L1/3R2/3

δ1/3

)
, the needed number of iterations by the FGM to

reach this accuracy in the case µ = 0.

Remark 12 We can also reach the level of accuracy F ∗4 = Θ
(√

L
µ δ
)

using the GM.

But the needed number of iteration is of order
Θ
(
L
µ log

(√
LµR2

δ

))
, worse than Θ

(√
L
µ log

(√
LµR2

δ

))
.

• B) The condition number Q = L
µ is sufficiently big and/or the oracle accuracy δ

is sufficiently big and/or R is sufficiently small such that F ∗4 = Θ
(√

L
µ δ
)
≥ F ∗1 =

Θ
(
L1/3R2/3δ2/3

)
i.e. δ ≥ Θ

(
R2µ3/2

L1/2

)
.

In this situation, we cannot exploit the fact that µ > 0. The best reachable accuracy

is of level Θ
(
L1/3R2/3δ2/3

)
after Θ

(
L1/3R2/3

δ1/3

)
iterations. It is the same result as

what we had obtained in [1] in the case µ = 0.

Remark 13 We can reach also reach the level Θ
(√

L
µ δ
)

. The needed number of

iteration is Θ
(

(Lµ)1/4R
δ1/2

)
.

Remark 14 We can also reach the level of accuracy F ∗1 = Θ(L1/3R2/3δ2/3) using
the GM. But the needed number of iterations is of order
min{Θ

(
L2/3R4/3

δ2/3

)
,Θ
(
L
µ log

(
L2/3R4/3

δ2/3

))
} = Θ

(
L2/3R4/3

δ2/3

)
which is worse than

Θ
(
L1/3R2/3

δ1/3

)
.

Remark 15 The impossibility to exploit the fact that µ > 0 when µ is too small comes
perhaps from our analysis. More precisely, it might come from the fact that we have

bounded f(yk)− f∗ ≤ 1
Ak

(
d(x∗) +

∑k
i=0Aiδ

)
using the two approximations:



April 22, 2013 25

1. 1 + µAk ≈ 1 when µ is small

2. 1 + µAk ≈ µAk when µ is big.

It would seems more natural for the best reachable accuracy, to be a continuous function

with limits Θ
(√

L
µ δ
)

when µ → +∞ and Θ
(
L1/3R2/3δ2/3

)
when µ → 0. However, it

seems very difficult to find an upper bound for f(yk) − f∗ which is at the same time
accurate and easy to analyze.

In conclusion, the best accuracy reachable by the FGM when endowed with a (δ, L, µ)

oracle is of order min{Θ(L1/3R2/3δ2/3),Θ
(√

L
µ δ
)
}. If such accuracy is sufficient, it is

preferable to use the FGM instead of the GM. However, if we want to reach a better level
of accuracy, for example of order Θ(δ), the only possibility is to use the GM, slower but
less sensitive to the oracle error.

5.4 Oracle accuracy not fixed: Required number of iterations and
required oracle accuracy for a given target accuracy

In this subsection, we consider a different situation. We assume that we can choose the
number of iterations k and the oracle accuracy δ but that we want to reach a target
accuracy ε for the objective function. Furthermore, in this case we assume that L and µ
are independent of the oracle accuracy δ. A way to ensure f(yk)− f∗ ≤ ε is to choose k
and δ such that one of the four models Fi(k) is smaller than ε. First, we will consider the
four models separately. Each model contains three terms and we will ensure Fi(k) ≤ ε
by imposing that each term in the model is smaller than ε

3 (another repartition of the
desired accuracy between the different terms of a model leads simply to different constant
factors in the resulting expressions for k and δ).

1. Model 1: F1(k) = 4Ld(x∗)
k2 +

(
1
3k + 2.4

)
δ.

We have the three conditions ensuring F1(k) ≤ ε:
•

4Ld(x∗)

k2
≤ ε

3
⇔ k ≥ 2

√
3Ld(x∗)

ε
.

We choose k = 2
√

3Ld(x∗)
ε

•
1

3
kδ ≤ ε

3
⇔ δ ≤ ε3/2

2
√

3L1/2d(x∗)1/2

•
2.4δ ≤ ε

3
⇔ δ ≤ ε

7.2
.

Therefore a first possibility for ensuring f(yk)−f∗ ≤ ε is to perform k = 2
√

3Ld(x∗)
ε

iterations with δ = min{ ε3/2

2
√

3L1/2d(x∗)1/2
, ε

7.2}.

2. Model 2: F2(k) = 4Ld(x∗)
k2 +

(
1 +

√
L
µ

)
δ.

We have the three conditions ensuring F2(k) ≤ ε:
•

4Ld(x∗)

k2
≤ ε

3
⇔ k ≥ 2

√
3Ld(x∗)

ε
•

δ ≤ ε

3
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• √
L

µ
δ ≤ ε

3
⇔ δ ≤ 1

3

√
µ

L
ε.

Therefore a second possibility for ensuring f(yk) − f∗ ≤ ε is to perform k =

2
√

3Ld(x∗)
ε iterations with δ = 1

3

√
µ
Lε.

3. Model 3: F3(k) = Ld(x∗) exp
(
−k2
√

µ
L

)
+
(

1
3k + 2.4

)
δ.

We have the three conditions ensuring F3(k) ≤ ε:
•

Ld(x∗) exp

(
−k

2

√
µ

L

)
≤ ε

3
⇔ k ≥ 2

√
L

µ
log

(
3Ld(x∗)

ε

)
.

We choose k = 2
√

L
µ log

(
3Ld(x∗)

ε

)
.

•
1

3
kδ ≤ ε

3
⇔ δ ≤ 1

2

√
µ

L

ε

log
(

3Ld(x∗)
ε

) .
•

2.4δ ≤ ε

3
⇔ δ ≤ ε

7.2
.

Therefore a third condition ensuring f(yk)−f∗ ≤ ε is to perform k = 2
√

L
µ log

(
3Ld(x∗)

ε

)
iterations with δ = min{ 1

2

√
µ
L

ε

log
(

3Ld(x∗)
ε

) , ε
7.2}.

4. Model 4: F4(k) = Ld(x∗) exp
(
−k2
√

µ
L

)
+
(

1 +
√

L
µ

)
δ. We have the three conditions

ensuring F4(k) ≤ ε:
•

Ld(x∗) exp

(
−k

2

√
µ

L

)
≤ ε

3
⇔ k ≥ 2

√
L

µ
log

(
3Ld(x∗)

ε

)
•

δ ≤ ε

3
• √

L

µ
δ ≤ ε

3
⇔ δ ≤ 1

3

√
µ

L
ε.

Therefore a fourth possibility for ensuring f(yk) − f∗ ≤ ε is to perform k =

2
√

L
µ log

(
3Ld(x∗)

ε

)
with δ = 1

3

√
µ
Lε.

Of course, we want to reach f(yk) − f∗ ≤ ε in a minimum number of iterations k and
with δ as big as possible (δ representing the accuracy of the first-order information, it
seems natural that a high accuracy for δ is costly). We will choose between these four
possibilities that ensure f(yk)− f∗ ≤ ε with the minimization of k as a first criterion and
the maximization of δ as a second criterion.

Remark 16 For simplicity, we assume here that ε ≤ 0.2315Ld(x∗) i.e. ε3/2

2
√

3L1/2d(x∗)1/2
≤

ε
7.2 . In particular, this assumption implies:

log

(
3Ld(x∗)

ε

)
≥ 3

2
.

We consider two main cases :
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1. Case 1:

2

√
3Ld(x∗)

ε
≤ 2

√
L

µ
log

(
3Ld(x∗)

ε

)
i.e. √

L

µ
≥

√
3Ld(x∗)

ε

log
(

3Ld(x∗)
ε

) .
In this case, models 1 and 2 are the most favorable regarding to the number of

iterations. We perform k = 2
√

3Ld(x∗)
ε = Θ

(√
LR2

ε

)
iterations. Concerning the

needed oracle accuracy, we have to consider two different subcases:

• Case 1.1: √
3Ld(x∗)

ε

log
(

3Ld(x∗)
ε

) ≤√L

µ
≤ 2

3

√
3Ld(x∗)

ε

In this case
√

µ
L
ε
3 ≥

ε3/2

L1/2
√
d(x∗)2

√
3

and model 2 is more interesting than the

first one. We choose δ =
√

µ
L
ε
3 = Θ

(√
µ
Lε
)
.

• Case 1.2: √
L

µ
≥ 2

3

√
3Ld(x∗)

ε

In this case ε3/2

L1/2
√
d(x∗)2

√
3
≥
√

µ
L
ε
3 and model 1 is more interesting than the

second one. We choose δ = ε3/2

L1/2
√
d(x∗)2

√
3

= Θ
(

ε3/2

L1/2R

)
.

Remark 17 : In the case 1.2., we do not exploit the fact that µ > 0. We obtain
the same number of iterations and the same oracle accuracy in the case µ = 0.

2. Case 2:

2

√
L

µ
log

(
3Ld(x∗)

ε

)
≤ 2

√
3Ld(x∗)

ε

i.e.: √
L

µ
≤

√
3Ld(x∗)

ε

log
(

3Ld(x∗)
ε

) .
In this case, models 3 and 4 are the most favorable with respect to the needed

number of iterations. We perform k = 2
√

L
µ log

(
3Ld(x∗)

ε

)
= Θ

(√
L
µ log

(
3LR2

ε

))
iterations. As log

(
3Ld(x∗)

ε

)
≥ 3

2 , we have

1

2

√
µ

L

ε

log
(

3Ld(x∗)
ε

) ≤√µ

L

ε

3
.

Therefore model 4 is always more interesting than the third one and we choose
δ =

√
µ
L
ε
3 = Θ

(√
µ
Lε
)
.
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6 GM and FGM for uniformly convex problems with
different levels of smoothness

In the Sections 3 and 5, we have studied the effect of a (δ, L, µ) oracle on the GM and
the FGM. In particular, we have established the complexity of these methods in a inexact
framework and the link between desired final accuracy and needed oracle accuracy.

In subsection 2.5, we have seen that a (δ, L, µ) oracle can be also available for functions
that are not in S1,1

µ,L(Q). More precisely, the function can be uniformly convex (instead of
strongly convex) and nonsmooth or weakly smooth (instead of smooth). The exact oracle
for a function f ∈ U0,ρ,ν

κ,M (Q) can be seen as a (δ, L, µ) oracle.

If we put these results together, we can apply the GM and the FGM, initially designed
for functions in S1,1

µ,L(Q), to functions in U0,ρ,ν
κ,M (Q). In this section, we study the com-

plexity of these two methods on various classes of convex problems with different levels of
smoothness and different levels of uniform convexity. For simplicity, we are only interested
in the order of the dependence of these complexities on ε (the desired final accuracy), κ
and M , not on the absolute constant factors. Furthermore, Theorem 3 is applied with
δ1 = δ2 = δ

2 .

6.1 Gradient method for function in U0,ρ,ν
κ,M (Q).

If we apply the gradient method to a function endowed with a (δ, L, µ) oracle and if the
desired accuracy is ε > 0, we know that the number of iterations that we have to perform
is

Θ

(
L

µ
log

(
LR2

ε

))
with an oracle accuracy δ = Θ (ε) . When the (δ, L, µ) oracle is in fact an exact oracle of a

function f ∈ U0,ρ,µ
κ,M (Q), we have (see Theorem 3) L = Θ

(
M

2
1+ν

δ
1−ν
1+ν

)
and µ = Θ

(
κ

2
ρ δ

ρ−2
ρ

)
.

Therefore

L

µ
= Θ

(
M

2
1+ν

κ
2
ρ δ

1−ν
1+ν+ ρ−2

ρ

)
= Θ

(
M

2
1+ν

κ
2
ρ ε

1−ν
1+ν+ ρ−2

ρ

)
and

log

(
LR2

ε

)
= Θ

(
log

(
M

2
1+νR2

ε
2

1+ν

))
.

We obtain the complexity:

Θ

(
L

µ
log

(
LR2

ε

))
= Θ

(
M

2
1+ν

κ
2
ρ ε

1−ν
1+ν+ ρ−2

ρ

log

(
M

2
1+νR2

ε
2

1+ν

))
.

We can particularize this complexity bound for different classes of uniformly convex prob-
lems:

1. The smooth case ν = 1 (f has a Lipschitz-continuous gradient)

• Strong convexity ρ = 2:

Θ

(
M

κ
log

(
MR2

ε

))
We retrieve the non-optimal complexity of the gradient method on S1,1

κ,M (Q).
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• Uniform convexity ρ ≥ 2:

Θ

(
M

κ
2
ρ ε

ρ−2
ρ

log

(
MR2

ε

))
This complexity cannot be optimal (see what we obtain in the next subsection
with the FGM).

2. The nonsmooth case ν = 0 (f has subgradients with bounded variation)

• Strong convexity ρ = 2:

Θ

(
M2

κε
log

(
M2R2

ε2

))
This complexity is optimal up to a logarithmic factor (see [3, 2]).

• Uniform convexity ρ ≥ 2:

Θ

(
M2

κ
2
ρ ε

2(ρ−1)
ρ

log

(
M2R2

ε2

))
This complexity is optimal, up to a logarithmic factor (see [2]).

3. The weakly smooth case 0 < ν < 1 (f has a Hölder continuous gradient)

• Strong convexity ρ = 2:

Θ

(
M

2
1+ν

κε
1−ν
1+ν

log

(
M

2
1+νR2

ε
2

1+ν

))

This complexity cannot be optimal (see what we obtain with FGM in the next
subsection).

• Uniform convexity ρ ≥ 2:

Θ

(
L

µ
log

(
LR2

ε

))
= Θ

(
M

2
1+ν

κ
2
ρ ε

1−ν
1+ν+ ρ−2

ρ

log

(
M

2
1+νR2

ε
2

1+ν

))
.

6.2 Fast gradient method for functions in U0,ρ,ν
κ,M (Q)

If we apply the fast gradient method to a function endowed with a (δ, L, µ) oracle and if
the desired accuracy is ε, we know that the number of iterations that we have to perform
is proportional to

Θ

(√
L

µ
log

(
LR2

ε

))
with an oracle accuracy δ = Θ

(√
µ
Lε
)
. When the (δ, L, µ) oracle is in fact an exact

oracle of a function f ∈ U0,ρ,µ
κ,M (Q), we have (see Theorem 3) L = Θ

(
M

2
1+ν

δ
1−ν
1+ν

)
and µ =

Θ
(
κ

2
ρ δ

ρ−2
ρ

)
. We obtain: √

L

µ
= Θ

(
M

1
1+ν

κ
1
ρ δ

1
2 ( 1−ν

1+ν+ ρ−2
ρ )

)
and therefore √

L

µ
δ = Θ

(
M

1
1+ν δ1− 1

2 ( 1−ν
1+ν+ ρ−2

ρ )

κ
1
ρ

)
.
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As
√

L
µ δ = Θ(ε) and as 1− 1

2

(
1−ν
1+ν + ρ−2

ρ

)
= ν

ν+1+ 1
ρ , we obtain that δ = Θ

((
κ

1
ρ ε

M
1

1+ν

) 1
ν
ν+1

+ 1
ρ

)
.

Therefore, we have √
L

µ
= Θ

( ε
δ

)
= Θ

 M
1

1+ν
1

ν
ν+1

+ 1
ρ

κ
1
ρ

1
ν
ν+1

+ 1
ρ ε

1
ν
ν+1

+ 1
ρ

−1


and

log

(
LR2

ε

)
= Θ

log


M

2
1+ν((

κ
1
ρ ε

M
1

1+ν

) 1
ν
ν+1

+ 1
ρ

) 1−ν
1+ν

R2

ε





= Θ

log

 M
2

1+ν+ 1−ν
(1+ν)2

(
1

ν
ν+1

+ 1
ρ

)
R2

κ
1
ρ

1−ν
1+ν

(
1

ν
ν+1

+ 1
ρ

)
ε

1−ν
1+ν

(
1

ν
ν+1

+ 1
ρ

)
+1


 .

We obtain the complexity:

Θ

 M
1

1+ν
1

ν
ν+1

+ 1
ρ

κ
1
ρ

1
ν
ν+1

+ 1
ρ ε

1
ν
ν+1

+ 1
ρ

−1
log

 M
2

1+ν+ 1−ν
(1+ν)2

(
1

ν
ν+1

+ 1
ρ

)
R2

κ
1
ρ

1−ν
1+ν

(
1

ν
ν+1

+ 1
ρ

)
ε

1−ν
1+ν

(
1

ν
ν+1

+ 1
ρ

)
+1


 .

We particularize now this complexity bound on different classes of uniformly convex prob-
lems:

1. The smooth case ν = 1 (f has a Lipschitz-continuous gradient)

• Strong convexity ρ = 2:

Θ

(
M

1
2

κ
1
2

log

(
MR2

ε

))

We retrieve the optimal complexity of the fast gradient method on S1,1
κ,M (Q).

• Uniform convexity ρ ≥ 2:

Θ

(
M

ρ
ρ+2

κ
2
ρ+2 ε

ρ−2
ρ+2

log

(
MR2

ε

))
2. The nonsmooth case ν = 0 (f has subgradients with bounded variation)

• Strong convexity ρ = 2:

Θ

(
M2

κε
log

(
M4R2

κε3

))
This complexity is optimal up to a logarithmic factor (see [3, 2]).

• Uniform convexity ρ ≥ 2:

Θ

(
Mρ

κερ−1
log

(
M2+ρR2

κερ+1

))
This complexity is clearly non-optimal (compare with what we obtain using the
GM in the previous subsection).
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3. The weakly smooth case 0 < ν < 1 (f has a Hölder continuous gradient)

• Strong convexity ρ = 2:

Θ

(
M

2
1+3ν

κ
ν+1
3ν+1 ε

1−ν
1+3ν

log

(
M

4ν+4
(1+ν)(1+3ν)R2

κ
1−ν
3ν+1 ε

3+ν
1+3ν

))

• Uniform convexity ρ ≥ 2:

Θ

 M
1

1+ν
1

ν
ν+1

+ 1
ρ

κ
1
ρ

1
ν
ν+1

+ 1
ρ ε

1
ν
ν+1

+ 1
ρ

−1
log

 M
2

1+ν+ 1−ν
(1+ν)2

(
1

ν
ν+1

+ 1
ρ

)
R2

κ
1
ρ

1−ν
1+ν

(
1

ν
ν+1

+ 1
ρ

)
ε

1−ν
1+ν

(
1

ν
ν+1

+ 1
ρ

)
+1


 .

7 Lower bound on errors increase

Applicability of first-order methods, initially designed for smooth strongly convex prob-
lems, to nonsmooth strongly convex problems, using the notion of inexact oracle, opens
a possibility to derive lower bounds on error increase. This is the main subject of this
section.

Theorem 8 Consider a first-order method for S1,1
µ,L(Q). Assume that the bounds on the

performance of this method, as applied to a problem equipped with a (δ, L, µ)-oracle, are
given by inequality

f(zk)− f∗ ≤ min
(
C1

LR2

kp1 , C2LR
2 exp

(
−k
(
µ
L

)p2))
+ min

(
C3k

q1δ, C4

(
L
µ

)q2
δ
)
.

(7.1)
where C1, C2, C3, C4 are absolute constants, and k is the iteration counter. Then the
inequalities

q1 ≥ p1 − 1

and
q2 ≥ 1− p2

must hold.

Proof. • q1 ≥ p1 − 1.
Let f be a nonsmooth convex function, whose subgradients have variation bounded
by constant M i.e f ∈ F 0,0

M (Q). We have seen in [1] that for such a function, the

standard oracle can be treated as a (δ, M
2

2δ , 0)-oracle for any δ > 0. Therefore, by
our method we can ensure the following rate of convergence:

f(zk)− f∗ ≤ C1M
2R2

2δkp1
+ C3k

q1δ.

Optimizing the right-hand side of this inequality in δ, we get

f(zk)− f∗ ≤ [2C1C3]1/2MR · k−
p1−q1

2 .

From the lower complexity bounds for nonsmooth optimization problems, we know
that black-box methods cannot converge faster than O( 1

k1/2
). Hence, we conclude

that p1 − q1 ≤ 1.

• q2 ≥ 1− p2.

Let f be a nonsmooth strongly convex function, whose subgradients have variation
bounded by constant M i.e. f ∈ U1,2,0

µ,M (Q). We have seen in Theorem 3 that for such
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a function, the standard oracle can be treated as (δ, M
2

2δ , µ)-oracle for any δ > 0.
Therefore, by our method we can ensure the following rate of convergence:

f(zk)− f∗ ≤ C2M
2R2

2δ
exp

(
−k
( µ

M2
2δ
)p2)

+ C4

(
M2

2δµ

)q2
δ

=
C2M

2R2

2δ
exp

(
−kµ

p22p2δp2

M2p2

)
+ C4

M2q2

2q2µq
δ1−q2 .

If we choose δ such that C4
M2q2

2q2µq2 δ
1−q2 = ε

2 , we obtain δ(ε) = 1
2
µ

q2
1−q2 ε

1
1−q2

C
1

1−q2
4 M

2q2
1−q2

. There-

fore, if we want an accuracy of ε for the objective function, we can choose k such

that C2M
2R2

2δ(ε) exp
(
−k µ

p22p2δp2

M2p2

)
= ε

2 i.e.

k =
M

2p2
1−q2 C

p2
1−q2
4

µ
p2

1−q2 ε
p2

1−q2

log

(
2C2M

2
1−q2R2

ε
2−q2
1−q2 µ

q2
1−q2

)
.

From the lower complexity bounds for nonsmooth strongly convex optimization
problems, we know that black-box methods cannot have a better complexity that
O
(

1
ε

)
(see [3, 2]). Hence, we conclude that p2

1−q2 ≥ 1 ⇔ p2 ≥ 1− q2.

We can consider two extreme cases:

• q1 = 0 and q2 = 0 ⇒ p1 ≤ 1 and p2 ≥ 1:
It is impossible to have a first-order method without increase of errors, which has
better complexity than GM, that is

min
(

Θ
(
LR2

ε

)
,Θ
(
L
µ log

(
LR2

ε

)))
.

• p1 = 2 and p2 = 1
2 ⇒ q1 ≥ 1 and q2 ≥ 1

2 :
If we want a first-order method with optimal complexity

min

(
Θ

(√
LR2

ε

)
,Θ
(√

L
µ log

(
LR2

ε

)))
like the FGM, then it must suffer from in-

crease of errors, with factor at least of order min
(

Θ(k),Θ
(√

L
µ

))
(we obtain exactly

this factor for the FGM).
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