

Use of beta-glucosidase activity for flavour enhancement in specialty beers

Luk Daenen Chair De Clerck 2012

Flavour complexity

Flavour modification

Here, focus on **biological** approach (<u>no</u> flavour addition):

- → Use of plant parts/extracts, enzymes, microorganisms
- Preferred by consumers:
 - Natural product, traditional process, authenticity, health, environment
- Advantage for producer:
 - "clean label", often cheaper, development of complex and subtle flavours

Interest for wine-making

- Some grape varieties have a significant pool of glycosidically bound flavour compounds → hidden flavour potential
- Hydrolysis by yeast, enzymes,...

Interest for brewing industry

Hops

- Flavour precursors in "green" part of hops (flowers, leaves, ...)
- Enhance "hoppy" aroma by precursor hydrolysis
- Interest for lager, ale, geuze, specialty beers, ...

Cherry

- Flavour precursors in juice, kernel, skin
- Enhance cherry flavour by precursor hydrolysis
- Interest for fruit beers

Release of hidden flavour potential

Glycosidically bound flavour compounds = glycosides

Treatment		Comment	
Acid hydrolysis	Low pH (3,0 -3,5)	Separate proces; Sour beers	
Enzymatic hydrolysis	Eg. Enzymes from Aspergillus niger	 Side activities possible: HCD activity → 4-VG Anthocyanidin breakdown (loss of colour) Esterase activity → isoamylacetate ↓ 	
Yeast biotransformation	Saccharomyces sp.	Mostly low or moderate activity	
	Brettanomyces sp.	High activity; but also other Brett flavours (!)	

→ Different treatments lead to different flavour profiles

Selection of yeast strains

Saccharomyces sp.

- Mostly no β-glucosidase
- All have exo-1,3- β-glucanse activity
 - → Low to moderate activity
- Some commercial wine strains with inducible β-glucosidase

Brettanomyces sp.

- Some with <u>high</u> β-glucosidase
- Mainly cell associated (low extracellular)
- Also minor glycosidase activities

Isolation of hop glycosides

Aglycones from hop glycosides

YPD fermentation with added hop glycosides

Linalool:

- citrus, floral, aniseed
- important contributor to hop aroma

Methyl salicylate:

- wintergreen, minty, spicy

Wort fermentation with *S. cerevisiae* brewing strains

- Wort + Saaz hop glycosides, or post-fermentation addition of a pre-hydrolyzed extract
- Fermentation with *S. cerevisiae* LD25 and LD40 (low and high exo-1,3-β-glucanase)
- Results:
 - ☐ Linalool: significant ↑ in extract; similar for 2 yeasts
 - □ Dihydroedulan & theaspiranes: clear ≠ for 2 yeasts
 - □ Sensory: significant increase; other compounds seem to be involved

7

Refermentation of a dry-hopped beer by different yeasts

'Kriek'-beer

Traditionally:

- intact sour cherries are added to wooden casks filled with young lambic
- leaving it for 5 to 6 months
- the sugar from the sour cherries triggers a second fermentation

Currently:

- also cherry pulp, cherry juice and cherry stones
- fruit extracts and essences
- flavours

Aglycones from sour cherry glycosides

Cherry stones contain the cyanogenic glycoside amygdalin

Development of cherry flavour

- Refermentation of a base beer, with addition of 200g sour cherries per liter
- Yeast: Brettanomyces custersii strain, selected for its high beta-glucosidase activity
- Results:
 - Increase in benzyl compounds (especially benzaldehyde reduced to benzylalcohol)
 - also other compounds important for cherry flavour: geraniol, eugenol, linalool

Summary

Treatment		Comment	
Acid hydrolysis	Low pH (3,0 -3,5)	Separate proces; sour beers	
Enzymatic hydrolysis	Eg. Enzymes from Aspergillus niger	Some have side activities: HCD activity → 4-VG Anthocyanidin breakdown (risk of color loss) Esterase activity → isoamylacetate ↓	
Yeast biotransformation	Saccharomyces sp.	Mostly low or moderate activity	
	Brettanomyces sp.	High activity; but also other Brett flavours	

→ Different treatments lead to different flavour profiles

Glycoside containing substrates:

- **Hop** flowers, pellets or hop solids
- Cherries (whole, juice, pulp and/ or kernels)
- Other fruits, spices, ...
- Route A: Traditional fermentation (beer α)
- Route B: Addition of flavor precursors (beer β)
- Route C: Addition of other microorganisms (beer γ)
- Route D: Addition of other microorganisms plus flavor precursors (beer δ)
- Route E: Refermentation with other microorganisms (beer ε)
- Route L: Refermentation with other microorganisms plus flavor precursors (beer λ)

~ Thank you for your attention ~

Hop glycoside flavour potential

Brettanomyces LD72 identification

- 1st identification → physiological tests
- 2 hd -> Apice intent years in lambic (printers With 3 and OPA09)
 - Brettanomyces custers# CMBS LD72
 - Brettanomyces^a 13-18 19-24 Brettanomyces^a

% of total

species		
abstinens	0	0
anomalus	3	6
bruxellensis	0	0
custersianus	1	0
custersii	0	0
intermedius	0	0
lambicus	0	0
naardenensis	0	0
nanonanus		
Number of species	2	1
Kloeckera	26	4

a: indicated by italic type

Experimental set-up of dry-hopping trial

HCN potential in sour cherry stones

Regulation of HCN in foodstuffs → EU-directive 88/388/EEC (1988)

1 mg HCN per (v/v)% alcohol

Example: cherry beer \rightarrow 4 (v/v)% alcohol

→ maximum 4 mg HCN / litre

200 g cherries / litre beer

stones = 5-7% of total weight (Chaovanalikit & Wrolstad 2004)

10 - 14 g stones / litre beer

amygdalin in stones: 0.22 (w/w)% (Chandra *et al.* 1993)

22.0 - 30.8 mg amygdalin / litre beer

$$MW_{HCN} = 27 \text{ g/mol}$$
 $MW_{amyg} = 457 \text{ g/mol}$

1.30 – 1.82 mg HCN / litre beer < 4 mg HCN / litre!

Released benzaldehyde: 5.1 – 7.1 mg / litre

threshold: 2 mg / litre

Considering:

- maximum release
- no evaporation

Lethale dosis → 42 mg HCN / 70 kg body weight