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Abstract: A broad variety of oxygen-substituted diaryl ketones has been synthesized by 

solar energy-induced Friedel Crafts acylations of 1,4-benzo- and 1,4-naphthoquinones with 

benzaldehydes. The in vitro antiproliferative properties of the photoproducts were assessed 

on prostate (DU-145), bladder (T24) and breast (MCF7) human-derived tumor cell lines 

and compared to non-tumor mouse fibroblasts (Balb/3T3). Among the tested compounds, 

it was found that those containing a 3,4,5-trimethoxyphenyl A-ring, such as 12 and 22 are 

more active on DU-145, with EC50 values of 1.2 and 5.9 μM, respectively. By comparing 

their effects on the three cancer cell lines, the analogue 22 has the best mean selective 

index (2.4). 
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1. Introduction 

Acylhydroquinones are valuable building blocks of natural [1–4] and synthetic compounds 

endowed with a variety of biological properties [5–20]. The classic procedures to construct the diaryl 

ketone framework of acylhydroquinones are based on the Friedel Crafts acylation and Fries 

rearrangement. Despite the efficiency of these synthetic methods, they have some disadvantages such 

as the lack of atom economy, the use of hazardous environmental Lewis acids, namely BF3, AlCl3, 

TiCl4, or ZnCl2 [21–26], and limitations regarding the use of precursors containing oxygen acid-labile 

functional groups. The photo-Friedel Crafts acylation of quinones with aliphatic and aromatic 

aldehydes to prepare acylhydroquinones is a green and efficient alternative method with respect to the 

classic aforementioned acylation methods. It is noteworthy that several examples of the preparation of 

acylhydroquinones by photoacylation of 1,4-quinone with aldehydes have been reported [27–34], 

however, the scope of this method to the synthesis of oxygen-substituted diaryl ketones had received 

relatively little attention.  

Among the broad variety of synthetic diaryl ketones the oxygen-substituted members, named 

phenstatin [35] and naphthylphenstatin [36] (Figure 1), stand out by their biological activity as 

microtubule-targeting agents. Based on these precedents we wanted to examine the synthetic flexibility 

of the eco-friendly solar photoacylation of 1,4-benzo- and 1,4-naphthoquinone with substituted 

benzaldehydes to the synthesis of diverse oxygen-substituted diaryl ketones. Taking advantage of this 

potentially simple access to oxygen-substituted diaryl ketones we were also interested in evaluating the 

series for in vitro antiproliferative activity on cancer cells. The aim of this study is mainly directed towards 

broadening the use of simple and eco-friendly methodologies in the synthesis of new oxygen-substituted 

diaryl ketones as well as to contribute to the search for new biological active members of this series. 

Figure 1. Structure of phenstatin and naphthylphenstatin. 

 

2. Results and Discussion 

2.1. Chemistry 

Based on our experience on the synthesis of heteroaroylhydroquinones by solar photoacylation of 

1,4-benzo- and 1,4-naphthoquinone 1 and 2 with heteroarylcarbaldehydes in benzene [33], we initially 

examined the reaction of 1 and 2 with mono-substituted benzaldehydes. The reactions were carried out 

by using a 6.5 molar excess of the aldehyde with respect to the quinone. It is interesting to point out 

that molar excess of aldehyde is used to inhibit the dimerization of the quinone [30]. To avoid the use 

of hazardous benzene as the solvent, both the reaction of 1 and 2 with benzaldehyde and the liquid 

isomers of methyl- and methoxybenzaldehydes were accomplished using the appropriate aldehyde in 
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excess as the solvent. In these experiments, performed by solar irradiation for 30 hours, the reaction 

mixtures were further submitted to column chromatography to give the respective photoproducts 3–8 

and 14–18 (Scheme 1) in the 34%–77% yield range (Table 1). The formation yields of the products 

were determined on the basis of the initial and the amounts of the respective quinones recovered. 

In parallel experiments, the above reactions were run in benzene in order to compare the yields of 

the photo-acylation reactions with and without this solvent. The results of these assays are collected in 

Table 1. The data indicate that the photoacylation reactions of quinones 1 and 2 give higher yields in 

benzene solvent than in excess aldehyde. 

Scheme 1. Photoacylation of quinones 1 and 2 with substituted benzaldehydes. 

 

The photoacylation of quinones 1 and 2 with the solid di- and trisubstituted benzaldehydes were 

carried out in benzene under the above mentioned solar irradiation conditions. The treatment provides 

access to the corresponding photoproducts 9–13 and 19–23 in good yields (Table 1). The new diaryl 

ketones 7, 9–13, 15, 19–21 and 23 were fully characterized by IR, 1H-, 13C-NMR and HRMS. 

The synthesis of compounds 4 (65%), 6 (79%), 8 (77%), 14 (57%) and 16 (70%) have been 

previously reported by photoacylation of 1 and 2 with the respective aldehydes in the presence of 

catalytic amounts of benzophenone and using artificial light irradiation [29]. According to the data in 

Table 1 better yields on these compounds are achieved by using the solar chemical procedure (method B). 

Selected indoor photoacylation experiments performed in benzene by using irradiation with fluorescent 

lamps indicate that the photoproducts were generated in low yields. 

Table 1. Oxygen-substituted diaryl ketones 3–23 prepared by solar photoacylation. 
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Table 1. Cont. 

Photoproduct 

Substituents Yield (%) a 

R1 R2 R3 R4 Method A b Method B c 

3 H H H H 77 91 
4  Me H H H 52 80 
5 H Me H H 34 74 
6 H H Me H 58 82  
7 H OMe H H 38 74 
8 H H OMe H 59 79  
9 OMe H H OMe - 70 

10 H H OMe OMe - 70 
11 H OMe OH H - 78 
12 H OMe OMe OMe - 70 
13 H OMe OH OMe - 70 
14 Me H H H 53 82 
15 H Me H H 41 69 
16 H H Me H 57 84 
17 H OMe H H 50 71  
18 H H OMe H 69 88  
19 OMe H H OMe - 65 
20 H H OMe OMe - 63 
21 H H OH OMe - 73 
22 H OMe OMe OMe - 60 
23 H OMe OH OMe - 66 

a Isolated by column chromatography; b Method A: the reaction was carried out using 1 or 2 (1 equiv.) and 

the aldehyde (7.5 equiv.) without benzene; c Method B: the reaction was carried out using 1 or 2 (1 equiv.), 

the aldehyde (7.5 equiv.) and benzene as the solvent. 

2.2. In Vitro Antiproliferative Activity of Diaryl Ketones 3–23 again Select Cancer Cell Lines 

The oxygen-substituted diaryl ketones 3–23 were evaluated for their in vitro antiproliferative 

activity on a panel of four cell lines, including non-tumor fibroblasts (Balb/3T3) and three  

human-derived tumor cell lines, namely DU-145 (prostate), T24 (bladder) and MCF7 (breast), using 

the conventional microculture tetrazolium reduction assay [37]. 

Table 2. In vitro inhibitory effect of compounds 3–23 on the proliferation of the  

human-derived tumor cell lines: T24 (bladder), DU-145 (prostate) and MCF7 (breast) and 

the non-tumor fibroblasts (Balb/3T3). 
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Table 2. Cont. 

 EC50 ± SEM a (μM)  

N° R1 R2 R3 R4 T24 DU-145 MCF-7 BALB/3T3 MSI b

3 H H H H 186.4 ± 20.4 205.0 ± 21.5 189.8 ± 19.2 38.5 ± 5.5 0.20 
4 Me H H H 172.5 ± 13.2 172.5 ± 19.7 180.7 ± 15.8 183.9 ± 17.6 1.06 
 5 H Me H H 202.3 ± 15.9 186.2 ± 17.8 225.7 ± 24.2 100.3 ± 9.5 0.49 
6 H H H Me 208.9 ± 19.5 100.8 ± 9.5 142.1 ± 15.3 78.3 ± 6.4 0.57 
7 H OMe H H 209.7 ± 20.5 166.1 ± 15.8 154.4 ± 12.3 117.6 ± 19.5 0.68 
8 H H OMe H 168.1 ± 12.2 170.2 ± 15.5 190.7 ± 17.5 85.2 ± 9.7 0.49 
9 OMe H H OMe 149.7 ± 18.4 130.3 ± 12.5 164.5 ± 13.8 43.7 ± 7.6 0.29 
10 H H OMe OMe 147.4 ± 19.2 140.0 ± 13.6 182.9 ± 17.7 35.4 ± 4.7 0.23 
11 H OMe OH H 154.5 ± 14.5 167.5 ± 15.9 176.7 ± 19.4 78.0 ± 9.3 0.47 
12 H OMe OMe OMe 3.6 ± 1.4 1.2 ± 0.6 53.6 ± 6.7 1.5 ± 0.4 0.57 
13 H OMe OH OMe >350 112.8 ± 10.7 >350 19.1 ± 3.1 - 
14 Me H H H 143.3 ± 9.5 143.8 ± 17.7 152.3 ± 14.5 225.5 ± 25.4 1.54 
15 H Me H H 136.8 ± 11.7 147.4 ± 15.9 144.9 ± 12.7 142.4 ± 13.9 0.99 
16 H H Me H 134.6 ± 12.8 158.3 ± 13.7 133.8 ± 14.9 138.9 ± 15.2 0.98 
17 H OMe H H 133.3 ± 12.4 139.4 ± 11.3 127.9 ± 13.6 109.1 ± 11.1 0.82 
18 H H OMe H 126.8 ± 10.6 77.5 ± 6.5 124.9 ± 10.2 107.0 ± 12.3 1.03 
19 OMe H H OMe 129.8 ± 10.1 128.7 ± 17.2 >310 100.3 ± 8.9 0.77 
20 H H OMe OMe 46.8 ± 5.1 61.8 ± 5.6 12.2 ± 3.8 2.8 ± 0.6 0.11 
21 H H OH OMe 86.6 ± 9.6 89.0 ± 7.3 15.7 ± 4.6 15.7 ± 3.9 0.45 
22 H OMe OMe OMe 13.5 ±1.9 5.9 ± 0.8 20.2 ± 4.5 25.1 ± 3.9 2.45 
23 H OMe OH OMe 112.0 ± 9.3 113.5 ± 9.5 130.2 ± 14.8 99.6 ± 7.5 0.84 

DOXc - - - - 0.65 ± 0.07 0.42 ± 0.03 0.33 ± 0.05 0.19 ± 0.01 0.44 
MITd - - - - 42.2 ± 5.8 14.3 ± 2.6 16.8 ± 2.9 27.3 ± 3.3 1.39 

a Data represent EC50 mean values ± SEM of at least three different experiments; b MSI: Mean Selective 

Index = EC50 values fibroblasts/EC50 values tumor cells; c DOX: doxorubicin; d MIT: mitomycin C. 

Table 2 summarizes the data from these evaluations: it shows the EC50 values (µM) of the 

respective benzo- and naphthohydroquinone derivatives. These values were calculated from their 

effects on MTT reduction in three cancer cell lines and Balb/3T3 non transformed mouse fibroblasts as 

a function of their concentration during 48 h of incubation. All three cancer cell lines were  

similarly sensitive to these compounds. With rather few exceptions, the members containing the 

dihydroxyphenyl fragment, such as 3–13, were in general less active than their corresponding  

naphthyl analogues 14–23 when tested against cancer cells, but just the opposite was observed in  

non-transformed fibroblasts. The data in Table 2 showed that compounds 12 and 22 appear as the most 

potent members of the series with lower EC50 values against T24 and DU-145 with respect to the 

reference drug mitomycin C. The biological activity differences of compounds 12 and 22 with respect 

to their analogues could be attributed to the 3,4,5-trimethoxy substitution on the A-phenyl ring. 

According to literature precedents, the 3,4,5-trimethoxyphenyl ring is considered essential for the 

antitubulin activity of a broad variety of antimitotic compounds [36,38–45]. Nevertheless, it should be 

noted that the EC50 values of compounds 12 and 22 are two orders of magnitude lower than to that 

reported to phenstatin when tested in the NCI screen [35] showing a mean panel GI50 (growth 

inhibitory) value of 6.01 × 10−8 M. In addition to the tendency showing that dihydroxynaphthyl 
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analogues are more active than the dihydroxyphenyl derivatives, the vast majority of compounds did 

not have an adequate selectivity (Table 2), that is they affect both cancer and non-tumor cells in a similar 

way. In this context, only compound 22 have a good mean selectivity index (2.45). 

3. Experimental 

3.1. General 

All reagents were commercially available reagent grade and were used without further purification. 

Melting points were determined on a Stuart Scientific SMP3 apparatus and are uncorrected. The IR 

spectra were recorded on an FT Bruker spectrophotometer using KBr disks, and the wave numbers  

are given in cm−1. 1H-NMR spectra were run on Bruker AM-200 and AM-400 instruments in 

deuterochloroform (CDCl3) and dimethyl sulfoxide-d6 (DMSO-d6). Chemical shifts are expressed in 

ppm downfield relative to tetramethylsilane (TMS, δ scale), and the coupling constants (J) are reported 

in Hertz. 13C-NMR spectra were obtained in CDCl3 + DMSO-d6 at 50 and 100 MHz. Chemical shifts 

are reported in δ ppm downfield from TMS, and J-values are given in Hertz. HRMS data were 

obtained on Thermo Finnigan mass spectrometer, model MAT 95XP and LTQ-Orbitrap mass 

spectrometer (Thermo-Fisher Scientific) with the analysis performed using an APCI source operated in 

positive mode. Silica gel Merck 60 (70–230 mesh) was used for preparative column chromatography 

and TLC aluminum foil 60F254 for analytical TLC. The solar irradiation experiments were performed 

at the Canchones Experimental Center in Iquique/Chile (latitude 20°26′43.80"S, 990 m above sea 

level), located in the Atacama Desert. 

3.2. Chemistry 

General Procedure for Photoacylation of 1 and 2 with Substituted Benzaldehydes in the Absence of 

Benzene (Method A) 

Quinone 1 or 2 (1 mmol) and the liquid aldehyde (7.5 mmol), were placed into a test tube, nitrogen 

was bubbled through the solution for 2 min and then the tube was sealed with a septum. The mixture 

was irradiated for six days (total illumination time of 30 h), under solar radiation conditions in the 

range 800–1100 Watts/m2 (November–March). The mixture reaction was chromatographed on silica 

gel (3:1 petroleum ether/ethyl acetate) to give pure samples of the corresponding diaryl ketones. The 

remaining precursors were recovered to be used in further preparations. 

General Procedure for Photoacylation of 1 and 2 with Substituted Benzaldehydes in Benzene  

(Method B). 

A 100 mL benzene solution of the required quinone 1 or 2 (1 mmol) and the substituted 

benzaldehyde (7.5 mmol), was placed into the outer jacket of a Liebig condenser type. The solution 

was bubbled with nitrogen (2 min), the flask was sealed with a septum and then irradiated for six days 

(total illumination time of 30 h), under solar radiation conditions in the range 800–1100 Watts/m2 

(November–March). The solvent was evaporated under reduced pressure and the residue was 
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chromatographed on silica gel (3:1 petroleum ether/ethyl acetate). The starting aldehyde and the 

solvent were recovered and employed in the next batches. 

(2,5-Dihydroxyphenyl)(phenyl)methanone (3). This compound was prepared from quinone 1 and 

benzaldehyde and was isolated in 77 and 91% yield by following methods A and B, respectively; 

orange solid, mp 121–122 °C (lit. [46]: 125–126 °C). IR (KBr) νmáx cm–1: 3456 (O-H), 3358 (O-H), 

1637 (C=O); 1H-NMR (CDCl3): δ 6.98 (m, 2H, 4'-H + 5-OH), 7.03 (s, 1H, 6-H), 7.11 (d, 2H, J = 7.2 Hz, 

2'-H + 6'-H), 7.19 (m, 2H, 3'-H + 5'-H), 8.10 (d, 1H, J = 7.8 Hz, 3-H or 4-H), 8.21 (d, 1H, J = 7.8 Hz, 

4-H or 3-H), 11.42 (bs 1H, 2-OH); 13C-NMR (CDCl3): δ 119.6, 119.9, 123.4, 125.5, 129.1, 129.5, 

129.7, 130.4, 130.6, 132.7, 138.9, 149.9, 206.1; HRMS (M+): m/z calcd for C13H10O3: 214.06299; 

found: 214.06189. 

(2,5-Dihydroxyphenyl)(2'-methylphenyl)methanone (4). This compound was prepared from quinone 1 

and 2-methylbenzaldehyde in 52 and 80% yield following methods A and B, respectively; yellow 

solid, mp 104–105 °C (lit. [47]: 106–108 °C). IR (KBr) νmáx cm–1: 3287 (O-H), 1638 (C=O); 1H-NMR 

(CDCl3): δ 2.29 (s, 3H, Me), 4.76 (s, 1H, 5-OH), 6.71 (d, 1H, J = 3.0 Hz, 6-H), 6.95 (d, 1H, J = 8.9 Hz, 

3-H), 7.04 (dd, 1H, J = 8.9, 3.0 Hz, 4-H), 7.27 (m, 3H, 3'-H + 4'-H + 6'-H), 7.39 (m, 1H, 5’-H), 11.81 

(s, 1H, 2-OH); 13C-NMR (CDCl3): δ 19.6, 118.1, 119.3, 119.5, 125.4, 125.5, 127.3, 130.2, 130.9, 

135.4, 137.7, 147.4, 157.5, 203.9; HRMS (M+): m/z calcd for C14H12O3: 228.07864; found: 228.07767. 

(2,5-Dihydroxyphenyl)(3'-methylphenyl)methanone (5). This compound was prepared from 1 and  

3-methylbenzaldehyde in 34 and 74% yield following methods A and B, respectively; yellow solid, mp 

119–120 °C (lit. [47]: 114–116 °C). IR (KBr) νmáx cm–1: 3285 (O-H), 1637 (C=O); 1H-NMR (CDCl3): 

δ 2.36 (s, 3H, Me), 5.82 (s, 1H, 5-OH), 6.91 (m, 1H, 3-H or 4-H), 7.01 (m, 2H, 4-H or 3-H + 6-H), 

7.31 (m, 2H, 4'-H + 5'-H or 5'-H + 6'-H), 7.38 (d, 1H, J = 7.2 Hz, 4'-H or 6'-H), 7.41 (s, 1H, 2'-H), 

11.63 (s. 1H, 2-OH); 13C-NMR (CDCl3): δ 21.4, 118.6, 118.9, 119.1, 124.9, 126.2, 128.2, 129.4, 

132.9, 137.6, 138.4, 147.4, 157.0, 201.7; HRMS (M+): m/z calcd for C14H12O3: 228.07864; found: 

228.07809. 

(2,5-Dihydroxyphenyl)(4'-methylphenyl)methanone (6). This compound was prepared from 1 and  

4-methylbenzaldehyde in 58 and 82% yield following methods A and B, respectively; yellow solid, mp 

135–136 °C. IR (KBr) νmáx cm−1: 3442 (O-H), 1629 (C=O); 1H-NMR (CDCl3): δ 2.40 (s, 3H, Me), 

5.44 (s, 1H, 5-OH), 6.93 (d, 1H, J = 7.6 Hz, 3-H), 7.02 (m, 2H, 4-H + 6H), 7.24 (d, 2H, J = 8.1 Hz,  

2'-H + 3'-H or 5'-H + 6'-H), 7.54 (d, 2H, J = 8.1 Hz, 3'-H + 2'-H or 6'H + 5'-H), 11.58 (s, 1H, 2-OH); 
13C-NMR (CDCl3): δ 21.6, 118.4, 119.0, 119.2, 124.7, 129.1 (2 × C), 129.4 (2 × C), 134.9, 142.9, 

147.3, 157.0, 201.7; HRMS (M+): m/z calcd for C14H12O3: 228.07864; found: 228.07831. 

(2,5-Dihydroxyphenyl)(3'-methoxyphenyl)methanone (7). This compound was prepared from 1 and  

3-methoxybenzaldehyde in 38 and 54% yield following methods A and B, respectively; yellow solid, 

mp 97–98 °C. IR (KBr) νmáx cm–1: 3344 (O-H), 1635 (C=O); 1H-NMR (CDCl3): δ 3.80 (s, 3H, OMe), 

5.80 (s, 1H, 5-OH), 6.91 (d, 1H, J = 9.8 Hz, 3-H or 4-H) 7.02 (m, 2H, 4-H or 3-H + 6-H), 7.06 (dd, 1H, 

J = 8.2, 2.2, Hz 4'-H or 6'-H), 7.14 (d, 1H, J = 2.2 Hz 2'-H), 7.16 (d, 1H, J = 7.9 Hz, 6'-H or 4'-H), 7.32 

(t, 1H, J = 7.9 Hz, 5'-H), 11.56 (s, 1H-2-OH); 13C-NMR (CDCl3): δ 55.5, 113.9, 118.1, 118.4, 118.8, 
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119.2, 121.6, 125.1, 129.4, 138.8, 147.5, 157.0, 159.4, 201.2; HRMS (M+): m/z calcd for C14H12O4: 

244.07356; found: 244.07361. 

(2,5-Dihydroxyphenyl)(4'-methoxyphenyl)methanone (8). This compound was prepared from 1 and  

4-methoxybenzaldehyde, in 58 and 79% yield according methods A and B, respectively; yellow solid, 

mp 144–145 °C. IR (KBr) νmáx cm−1: 3343 (O-H), 1631 (C=O); 1H-NMR (CDCl3): δ 3.87 (s, 3H, 

OMe), 6.90 (d, 1H, J = 8.8 Hz, 3-H or 4-H), 6.97 (d, 2H, J = 8.8 Hz, 2'-H + 3'-H or 5'-H + 6'-H), 7.08 

(m, 2H, 4-H or 3-H + 6-H), 7.72 (d, 2H, J = 8.8 Hz, 6'-H + 5'-H or 3'-H + 2'-H), 8.32(s, 1H, 5-OH), 

11.38 (s, 1H, 2-OH); 13C-NMR (CDCl3): δ 55.5, 113.6, 115.9, 118.1, 118.7, 119.2, 122.4, 124.4, 130.4, 

131.8, 148.7, 155.9, 162.8, 199.7; HRMS (M+): m/z calcd for C14H12O4: 244.07356; found: 244.07360. 

(2,5-Dihydroxyphenyl)(2',5'-dimethoxyphenyl)methanone (9). This compound was prepared from 1 and 

2,5-dimethoxybenzaldehyde in 70% yield (method B); yellow solid, mp 135–136 °C. IR (KBr) νmáx 

cm−1: 3299 (O-H), 1637 (C=O); 1H-NMR (CDCl3 + DMSO-d6): δ 3.74 (s, 3H, OMe), 3.78 (s, 3H, 

OMe), 6.82 (s, 2H, 6-H + 6'-H), 6.87 (d, 1H, J = 8.8 Hz, 3-H), 6.96 (m, 2H, 3'-H + 4'-H), 7.06 (d, 1H,  

J = 8.8 Hz, 4-H), 8.39 (s, 1H, 5-OH), 11.60 (s, 1H, 2-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 55.9, 

56.4, 113.1, 113.8, 116.0, 116.8, 118.2, 118.4, 119.8, 125.6, 149.1, 150.6, 153.4, 156.3, 201.3; HRMS 

(M+): m/z calcd for C15H14O5: 274.08412; found: 274.08316. 

(2,5-Dihydroxyphenyl)(3,4-dimethoxyphenyl)methanone (10). This compound was prepared from 1 and 

3,4-dimethoxybenzaldehyde in 70% yield (method B); brown solid, mp 79–81 °C. IR (KBr) νmáx cm–1: 

3354 (O-H), 1630 (C=O); 1H-NMR (CDCl3 + DMSO-d6): δ 3.86 (s, 6H, 2 × OMe), 6.83 (s, 1H, 6'-H), 

6.82 (s, 1H, 5'-H), 6.89 (d, 1H, J = 9.2 Hz, 3-H), 6.94 (s, 1H, 2'-H), 6.97 (d, 1H, J = 8.8 Hz, 4-H), 7.18 

(s, 1H, 6-H), 8.69 (s, 1H, 5-OH), 11.34 (s, 1H, 2-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 55.9, 60.5, 

104.5, 111.2, 117.9, 118.4, 118.8, 122.5, 124.6, 133.0, 149.7, 149.8, 152.8, 155.7, 200.0; HRMS 

(APCI): [M+H]+ calcd for C15H14O5: 275.08412; found: 275.09072. 

(2,5-Dihydroxyphenyl)(4'-hydroxy-3'-methoxyphenyl)methanone (11). This compound was prepared in 

78% yield (method B) from 1 and 4-hydroxy-3-methoxybenzaldehyde; yellow solid, mp 221–222 °C. 

IR (KBr) νmáx cm–1: 3329 (O-H), 1639 (C=O); 1H-NMR (CDCl3 + DMSO-d6): δ 3.77 (s, 3H, OMe), 

6.86 (d, 1H, J = 8.0 Hz, 4-H or 3-H), 6.95 (d, 1H, J = 8.0 Hz, 3-H or 4-H), 7.03 (d, 1H, J = 8.8 Hz,  

6'-H), 7.11 (s, 1H, 2'-H), 7.26 (d, 1H, J = 8.4 Hz, 5'-H), 7.31 (s, 1H, 6-H), 7.63 (s, 1H, 4'-OH), 8.89  

(s, 1H, 5-OH), 11.10 (s, 1H, 2-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 55.5, 107.1, 111.5, 112.2, 

114.1, 121.7, 123.7, 125.4, 128.5, 143.7, 146.7, 149.7, 156.1, 198.9; HRMS (M+): m/z calcd for 

C14H12O5: 260.06847; found: 260.06764. 

(2,5-Dihydroxyphenyl)(3',4',5'-trimethoxyphenyl)methanone (12). This compound was prepared in 70% 

yield (method B) from 1 and 3,4,5-trimethoxybenzaldehyde; yellow solid, mp 68–70 °C. IR (KBr) νmáx 

cm–1:3445 (OH), 3200 (O-H), 1639 (C=O); 1H-NMR (CDCl3 + DMSO-d6): δ 3.81 (s, 9H, 3 × OMe), 

6.81 (d, 1H, J = 8.8 Hz, 3-H), 6.87 (s, 2H, 2'-H + 6'-H), 7.0 (d, 1H, J = 8.8 Hz, 4-H), 7.07 (s, 1H, 6-H), 

8.58 (s, 1H, 5-OH), 11.23 (s, 1H, 2-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 56.3 (2 × C), 60.8, 107.0, 

117.9, 118.7, 118.8, 124.9, 133.0, 141.3, 149.0 (2 × C), 149.9, 152.8, 156.0, 199.9; HRMS (M+): m/z 

calcd for C16H16O6: 304.09469; found: 304.09378. 
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(2,5-Dihydroxyphenyl)(4'-hydroxy-3',5'-dimethoxyphenyl)methanone (13). This compound was 
prepared in 70% (method B) from 1 and 4-hydroxy-3,5-dimethoxybenzaldehyde; yellow solid, mp 
200–201 °C. IR (KBr) νmáx cm–1: 3331(O-H), 1635 (C=O); 1H-NMR (CDCl3 + DMSO-d6): δ 3.92 (s, 
6H, 2 × OMe), 6.87 (d, 1H, J = 9.0 Hz, 3-H), 7.03 (s, 3H, 6-H + 2'-H + 6'-H), 7,16 (d, 1H, J = 9.0 Hz, 

4-H), 8.47 (s, 1H, 4-OH), 8.78 (s, 1H, 5-OH), 11.15 (s, 1H, 2-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 
56.0 (2 × C), 107.2 (2 × C), 117.3, 118.0, 118.9, 123.5, 127.5, 139.6, 146.8 (2 × C), 148.6, 154.7, 
198.6; HRMS (M+): m/z calcd for C15H14O6: 290.07904; found: 290.07830. 

(1,4-Dihydroxynaphthalen-2-yl)(2'-methylphenyl)methanone (14). This compound was prepared from 

quinone 2 and 2-methylbenzaldehyde in 53 and 82% yield following methods A and B, respectively; 

orange solid, mp 132–133 °C. IR (KBr) νmáx cm−1: 3357 (O-H), 1638 (C=O); 1H-NMR (CDCl3): δ 

2.23 (s, 3H, Me), 5.53 (s, 1H, 4-OH), 6.46 (s, 1H, 3-H), 7.17 (m, 3H, 3'-H + 4'-H + 6'-H), 7.26 (m, 1H, 

5'-H), 7.58 (t, 1H, J = 7.6 Hz, 6-H or 7-H), 7.66 (t, 1H, J =7.6 Hz, 7-H or 6-H), 8.07 (d, 1H, J = 8.3 Hz, 

5-H or 8-H), 8.50 (d, 1H, J = 8.3 Hz, 8-H or 5-H), 13.63 (s, 1H, 1-OH); 13C-NMR (CDCl3): δ 19.7, 

107.5, 112.4, 121.9, 124.0, 125.4, 125.9, 126.7, 127.0, 129.8, 129.9, 130.3, 130.8, 135.2, 138.0, 143.1, 

158.8, 203.7; HRMS (APCI): [M+H]+ calcd for C18H14O3: 279.09429; found: 279.10136. 

(1,4-Dihydroxynaphthalen-2-yl)(3'-methylphenyl)methanone (15). This compound was prepared from 

quinone 2 and 3-methylbenzaldehyde in 41 and 69% yield according methods A and B, respectively; 

orange solid, mp 154–155 °C. IR (KBr) νmáx cm–1: 3313 (O-H), 1633 (C=O); 1H-NMR (CDCl3): δ 2.44 

(s, 3H, Me), 6.98 (s, 1H, 3-H), 7.39 (m, 2H, 4'-H or 6'-H + 2'-H), 7.51 (m, 2H, 6'-H or 4'-H + 5'-H), 

7.56 (m, 1H, 6-H or 7-H), 7.66 (t, 1H, J = 7.6 Hz, 7-H or 6-H), 8.20 (d, 1H, J = 8.3 Hz, 5-H or 8-H), 

8.46 (d, 1H, J = 8.3 Hz, 8-H or 5-H), 8.87 (s, 1H, 4-OH), 13.50 (s, 1H, 1-OH); 13C-NMR (CDCl3): δ 

21.4, 107.4, 111.9, 122.3, 124.2, 125.8 (2 × C), 126.1, 127.9, 129.3, 129.5, 130.1, 132.0, 138.1, 138.5, 

144.3, 157.4, 201.2; HRMS (APCI): [M+H]+ calcd for C18H14O3: 279.09429; found: 279.10124. 

(1,4-Dihydroxynaphthalen-2-yl)(4'-methylphenyl)methanone (16). This compound was prepared from 

2 and 4-methylbenzaldehyde in 57 and 84% yield according methods A and B, respectively; orange 

solid, mp 150–151 °C. IR (KBr) νmáx cm−1: 3422 (O-H), 1635 (C=O); 1H-NMR (CDCl3): δ 2.43 (s, 3H, 

Me), 7.0 (s, 1H, 3-H), 7.30 (d, 2H, J = 7.8 Hz, 2'-H + 3'-H or 5'-H + 6'-H), 7.56 (t, 1H, J = 7.5 Hz, 6-H 

or 7-H), 7.64 (d, 2H, J = 7.8 Hz, 3'-H + 2'-H or 6'-H + 5'-H), 7.65 (m, 1H, 7-H or 6-H), 8.20 (d, 1H,  

J = 8.3 Hz, 5-H or 8-H), 8.47 (d, 1H, J = 8.3 Hz, 8-H or 5-H), 8.71 (s, 1H, 4-OH), 13.48 (s, 1H, 1-OH); 
13C-NMR (CDCl3): δ 21.6, 107.6, 111.9, 122.3, 124.2, 125.9, 126.1, 128.9 (2 × C), 129.3 (2 × C), 

129.4, 129.9, 135.8, 141.9, 144.2, 157.3, 200.8; HRMS (APCI): [M+H]+ calcd for C18H14O3: 

279.09429; found: 279.10122. 

(1,4-Dihydroxynaphthalen-2-yl)(3'-methoxyphenyl)methanone (17). This compound was prepared 

from 2 and 3-methoxybenzaldehyde in 50 and 71% yield according methods A and B, respectively; 

orange solid, mp 149–150 °C (lit. [34]: 142-144 °C). IR (KBr) νmáx cm–1: 3344 (O-H), 1633 (C=O); 
1H-NMR (CDCl3): δ 3.85 (s, 3H, OMe), 6.99 (s, 1H, 3-H), 7.08 (dd, 1H, J = 8.1, 2.0 Hz, 4'-H or 6'-H), 

7.23 (s, 1H, 2'-H), 7.28 (m, 1H, 6'-H or 4'-H), 7.39 (t, 1H, J = 7.9 Hz, 5'-H), 7.56 (t, 1H, J = 7.6 Hz, 6-H 

or 7-H), 7.66 (t, 1H, J = 7.6 Hz 7-H or 6-H), 8.20 (d, 1H, J = 8.3 Hz, 5-H or 8-H), 8.47 (d, 1H, J = 8.3 Hz 

8-H or 5-H), 8.65 (s, 1H, 4-OH), 13.46 (bs, 1H, 1-OH); 13C-NMR (CDCl3): δ 55.5, 107.3, 111.9, 
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113.7, 117.6, 121.4, 122.3, 124.3, 125.9, 126.2, 129.3, 129.6, 130.1, 139.8, 144.3, 157.7, 159.3, 200.7; 

HRMS (M+): m/z calcd for C18H14O4: 294.08921; found: 294.08854. 

(1,4-Dihydroxynaphthalen-2-yl)(4'-methoxyphenyl)methanone (18). This compound was prepared 

from 2 and 4-methoxybenzaldehyde in 69 and 88% yield according methods A and B, respectively; 

yellow solid, mp 150-151°C (lit. [34]: 130–132 °C). IR (KBr) νmáx cm–1: 3470 (O-H), 1631 (C=O);  
1H-NMR (CDCl3): δ 3.86 (s, 3H, OMe), 6.97 (d, 2H, J = 8.7 Hz, 2'-H + 3'-H or 5'-H + 6'-H), 7.02  

(s, 1H, 3-H), 7.56 (t, 1H, J = 7.4 Hz, 6-H or 7-H), 7.65 (t, 1H, J = 7.4 Hz, 7-H or 6-H), 7.75 (d, 2H,  

J = 8.7 Hz, 6'-H + 5'-H or 3'-H + 2'-H), 8.20 (d, 1H, J = 8.3 Hz, 5-H or 8-H), 8.47 (m, 2H, 8-H or 5-H + 

4-OH), 13.43 (s, 1H, 1-OH); 13C-NMR (CDCl3): δ 55.5, 107.8, 111.9, 113.5, 122.3, 124.2, 125.9, 

126.1, 129.3 (2 × C), 129.8, 130.9, 131.6 (2 × C), 144.1, 157.2, 162.4, 199.6; HRMS (APCI): [M+H]+ 

calcd for C18H14O4: 295.08921; found: 295.08059. 

(1,4-Dihydroxynaphthalen-2-yl)(2',5'-dimethoxyphenyl)methanone (19). This compound was prepared 

from 2 and 2,5-dimethoxybenzaldehyde in 65% yield (method B); yellow solid, mp 160–161 °C. IR 

(KBr) νmáx cm–1: 3389 (O-H), 1630 (C=O); 1H-NMR (CDCl3 + DMSO-d6): δ 3.75 (s, 3H, OMe), 3.79 

(s, 3H, OMe), 6.70 (s, 1H, 6'-H), 6.90 (s, 1H, 3-H), 6.97 (m, 2H, 3'-H + 4'-H), 7.56 (t, 1H, J = 8.8 Hz, 

6-H or 7-H), 7.66 (t, 1H, J = 8.8 Hz, 7-H or 6-H), 8.18 (d, 1H, J = 8.4 Hz, 8-H), 8.47 (s, 1H, 4-OH), 

8.48 (d, 1H, J = 8.4 Hz, 5-H), 13.48 (s, 1H, 1-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 56.0, 56.6, 

107.4, 113.1, 113.2, 113.9, 117.0, 122.4, 124.5, 125.9, 126.2, 129.1, 129.7, 130.5, 144.4, 150.7, 153.5, 

157.4, 200.8; HRMS (M+): m/z calcd for C19H16O5: 324.09978; found: 324.09914. 

(1,4-Dihydroxynaphthalen-2-yl)(3',4'-dimethoxyphenyl)methanone (20). This compound was prepared 

from 2 and 3,4-dimethoxybenzaldehyde in 63% yield (method B); orange solid, mp 212–213 °C. IR 

(KBr) νmáx cm–1: 3462 (O-H), 1638 (C=O); 1H-NMR (CDCl3 + DMSO-d6): δ 3.65 (s, 6H, 2 × OMe), 

6.82 (s, 1H, 5'-H), 6.88 (s, 1H, 6'-H or 2'-H), 7.00 (s, 1H, 2'-H or 6'-H), 7.12 (s, 1H, 3-H), 7.56 (d, 1H, 

J = 6.8 Hz, 8-H), 8.19 (d, 1H, J = 6.8 Hz, 5-H), 8.46 (t, 2H, J = 8.4 Hz, 6-H + 7-H), 9.05 (s, 1H,  

4-OH), 13.42 (s, 1H, 1-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 56.0, 60.7, 104.7, 107.3, 111.0, 111.8, 

122.3, 124.1, 126.0, 126.7, 128.7, 129.3, 129.9, 130.9, 144.3, 149.8, 152.9, 157.1, 199.9; HRMS 

(APCI): [M+H]+ calcd for C19H16O5: 325.09977; found: 325.09146. 

(1,4-Dihydroxynaphthalen-2-yl)(4'-hydroxy-3'-methoxyphenyl)methanone (21). This compound was 

prepared from 2 and 4-hydroxy-3-methoxybenzaldehyde in 73% yield (method B); orange solid, mp 

221–222 °C. IR (KBr) νmáx cm–1: 3469 (O-H), 1635 (C=O); 1H-NMR (CDCl3 + DMSO-d6): δ 3.96  

(s, 3H, OMe), 7.00 (d, 1H, J = 7.8 Hz, 8-H), 7.13 (s, 1H, 2'-H), 7.33 (d, 1H, J = 7.6 Hz, 5-H), 7.43  

(s, 1H, 3-H), 7.56 (t, 1H, J = 7.8 Hz, 6-H or 7-H), 7.65 (t, 1H, J = 7.8 Hz, 7-H or 6-H), 8.20 (d, 1H,  

J = 8.0 Hz, 6'-H or 5'-H), 8.44 (d, 1H, J = 8.0 Hz, 5'-H o 6'-H), 8.81 (s, 1H, 4'-OH), 9.04 (s, 1H,  

4-OH), 13.38 (s, 1H, 1-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 55.9, 107.5, 112.0, 112.6, 114.5, 122.1, 

123.9, 124.1, 125.7, 125.8, 128.9, 129.5, 129.7, 144.1, 147.1, 150.1, 156.5, 199.3; HRMS (M+): m/z 

calcd for C18H14O5: 310.08413; found: 310.08401. 
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(1,4-Dihydroxynaphthalen-2-yl)(3',4',5'-trimethoxyphenyl)methanone (22). This compound was 

prepared from 2 and 3,4,5-trimethoxybenzaldehyde in 60% yield (method B); brown solid, mp  

189–191 °C. Mp and the spectral properties of 22 were in agree to those reported in literature [19]. 

(1,4-Dihydroxynaphthalen-2-yl)(4'-hydroxy-3',5'-dimethoxyphenyl)methanone (23). This compound 

was prepared from 2 and 4-hydroxy-3,5-dimethoxybenzaldehyde in 66% yield (method B); yellow 

solid, mp 173–174 °C. IR (KBr) νmáx cm–1: 3346 (O-H), 1630 (C=O); 1H-NMR (CDCl3 + DMSO-d6): 

δ 3.95 (s, 6H, 2 × OMe), 7.08 (s, 2H, 2'-H + 6'-H), 7.16 (s, 1H, 3-H), 7.56 (t, 1H, J = 7.2 Hz, 6-H or  

7-H), 7.66 (t, 1H, J = 7.2 Hz, 7-H or 6-H), 8.20 (d, 1H, J = 8.4 Hz, 8-H), 8.45 (d, 1H, J = 8.4 Hz, 5-H), 

9.11 (s, 2H, 4-OH), 13.34 (s, 1H, 1-OH); 13C-NMR (CDCl3 + DMSO-d6): δ 56.3 (2 × C), 107.2  

(2 × C), 111.8, 122.1, 122.5, 123.9, 125.7, 125.9, 128.6, 129.0, 129.5, 139.0, 144.2, 146.9, (2 × C), 

149.3, 199.2; HRMS (M+): m/z calcd for C19H16O6: 340.09469; found: 340.09380. 

3.3. Antiproliferative Assay 

3.3.1. Cell Lines and Culture Conditions 

Human cancer cell lines (T24, DU-145, MCF7) were cultured in high-glucose Dulbecco's modified 

Eagle medium (Gibco, Grand Island, NY, USA) supplemented with 10% foetal calf serum, penicillin 

(100 U/mL), and streptomycin (100 μg/mL). Balb/3T3 cells (normal mouse fibroblasts) were cultured 

in the same medium, except that the foetal calf serum was replaced by 10% newborn calf serum. All 

cultures were kept at 37 °C in 95% air/5% CO2 at 100% humidity. Phosphate-buffered saline (PBS) 

was purchased from Gibco. Cells were incubated at the indicated times at 37 °C with or without 

hydroquinones at various concentrations. 

3.3.2. Cellular Assays 

The cytotoxicity of the bis aryl ketones was assessed by following the reduction of MTT  

(3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) to formazan blue [37]. Briefly, cells 

were seeded into 96-well plates at a density of 10,000 cells/well for 24 h and then incubated for 48 h 

with or without the compounds. Cells were then washed twice with warm PBS and incubated with 

MTT (0.5 mg/mL) for 2 h at 37 °C. Incubation medium was thereafter discarded and the blue 

formazan crystals were solubilized by adding 100 μL DMSO/well. The colour solution was 

subsequently read at 550 nm. Results are expressed as % of MTT reduction compared to untreated 

control conditions. The calculation of EC50 values was performed by using GraphPad Prism software 

(San Diego, CA, USA). 

4. Conclusions 

We have extended the photo-Friedel Crafts acylation of 1,4-benzo- and 1,4-naphthoquinone with 

aldehydes to the synthesis of a significant number of oxygen-substituted diaryl ketones. The main 

advantages of this general procedure respect to other methods to construct oxygen-substituted diaryl 

ketone framework are the atom economy, simplicity, cheap and the chemical stability of the oxygen 

substituent of precursors and/or products. From the antiproliferative screening of the oxygen-substituted 
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diaryl ketones, compounds 12 and 22 stand out by their biological activity levels on prostate DU-145 

(EC50: 1.2 and 5.9 μM) and bladder T24 (EC50: 3.6 and 13.5 μM) cell lines, compared to those of the 

anticancer drug mitomycin C (EC50: 14.3 and 42.2 μM). Even though compound 22 displayed less 

potency than the analog 12, it exhibited a better mean selective index. Although compounds 12 and 22 

have EC50 values lower than to GI50 values reported for phenstatin, due to their structural similarity it 

may be hypothesized that inhibition of microtubule assembly is involved in the antiproliferative 

mechanism of these two compounds. Chemical modifications of compounds 12 and 22 directed to 

access to the scaffold of future active tubulin polymerization inhibitors are in progress. 
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