Monitoring Combretastatin A4–Induced Tumor Hypoxia and Hemodynamic Changes Using Endogenous MR Contrast and DCE-MRI

Florence Colliez,1† Anne-Catherine Fruytier,1† Julie Magat,1 Marie-Aline Neveu,1 Patrice D. Cani,2 Bernard Gallez,1 and Bénédicte F. Jordan1*

INTRODUCTION

The chaotic vascular network in tumors is a well-known target of antitumor treatment. Antiangiogenic agents and vascular disrupting agents (VDAs) are part of the vascular targeting agents family (1). Whereas antiangiogenic agents are designed primarily to slow down angiogenesis, VDAs are used to target the already established vasculature (2).

Combretastatin A4 (CA4) is a VDA derived from the bark of Combretum caffrum (3) that has been known to induce a decrease in tumor perfusion within the first hours after its administration (4,5). CA4 phosphate (CA4P), a produg that directly metabolizes into CA4 (6), is one of numerous VDAs that are currently undergoing clinical trials (1,7–11). Considering the tumor as a whole, a vascular shutdown occurs rapidly after CA4 administration, inducing a decrease in tumor perfusion and tumor oxygenation at early first times (4,5,12), resulting in an extensive tumor necrosis in 24 hr. Those parameters recover after 1 day, despite an increase in tumor necrosis. However, a rim of viable cells at the periphery of the necrotic tissue remains untreated by CA4 and turns out to be sufficient for tumor regrowth (13). Consequently, combinations with other therapies—including radiotherapy (14,15), hyperthermia (16), and chemotherapy (17)—are currently being investigated, as these conventional methods will target the residual well-perfused and oxygenated peripheral cells. Preclinical studies have shown that the efficiency of radiotherapy combined with CA4P therapy depends on timing and scheduling (14,18). Indeed, the treatment is more efficient when CA4P is administered at the same time or after radiotherapy, as it reinforces the damages to vasculature caused by irradiation (15) whereas there is no synergistic effect when the CA4P is administered before irradiation, probably because VDA administration causes an increase in tumor hypoxia, leading to radioresistance.

Accordingly, it is relevant to identify markers able to monitor changes in tumor hemodynamics induced by CA4 treatment. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive method of monitoring the early effects of VDAs on tumor vasculature (19). Decreases in the volume transfer constant between blood plasma and extravascular extracellular space (Ktrans) and the blood plasma volume per unit volume of tissue (v_p) have been shown to be relevant markers of CA4 efficacy (20–22). The effects of CA4P on oxygenation have also been investigated recently with invasive techniques such as diffuse reflectance spectroscopy (23), near infrared

*Correspondence to: Bénédicte Jordan, Ph.D., Biomedical Magnetic Resonance Unit (REMA), SSS- Louvain Drug Research Institute, Universit é Catholique de Louvain, Avenue Emmanuel Mounier, 73 Boîte B1.73.08, 1200 Brussels, Belgium. E-mail: benedictejordan@uclouvain.be

†Florence Colliez and Anne-Catherine Fruytier contributed equally to this work.
spectroscopy and pimonidazole staining (24), and 19F MRI oximetry (25). Recently, a new noninvasive MRI technique based on the high solubility of oxygen in lipids was developed to map changes in tumor hypoxia. The technique, known as mapping oxygenation by imaging lipids relaxation enhancement (MOBILE) (26), allows the monitoring of R1 relaxation rate changes of the lipid peak induced by a change in tissue oxygenation. MOBILE has been applied on animal models to follow a change in oxygenation induced by a hyperoxic challenge in brain, muscles, and mammary tumors and has also been implemented in clinical settings (27,28). The present study benchmarks MOBILE, electron paramagnetic resonance (EPR) oximetry, and DCE-MRI as biomarkers of changes in tumor hemodynamics induced by the antivascular agent CA4. Immunohistological experiments confirmed the effects of CA4 ex vivo.

METHODS

Tumor Models

NT2 cells (provided by E. Jaffee) or MDA-MB-231 cells (LGC Promochem) were injected subcutaneously in 6-week-old FVB/N or nude NMRI female mice (Janvier), respectively. Animal studies were undertaken in accordance with national and local ethical committee regulations (agreement number UCL/2010/MD/001). Experiments were performed when the tumors reached a diameter of 5.5 ± 0.5 cm. Mice were anesthetized via inhalation of isoflurane (Forene, Abbot, UK) mixed with air, as this form of anesthesia has been shown to not interfere with tissue hemodynamics (29). Body temperature was maintained at 37°C ± 1°C with a circulating water blanket and monitored together with respiration during the experiments.

Imaging Protocol

Because of the injection of the contrast agent for DCE-MRI, we could not obtain MOBILE images for the same mice. Consequently, we randomly separated mice into two distinct cohorts of five tumors per model to undergo either DCE-MRI or both MOBILE and EPR experiments. Each mouse received an intraperitoneal injection of a solution of CA4 dissolved in dimethyl sulfoxide (DMSO; 100 mg/kg of CA4). Three EPR measurements were acquired at baseline before MOBILE imaging and were repeated 3 hr after CA4 administration immediately following the MOBILE acquisitions. DCE-MRI was also performed before and 3 hr after CA4 injection. The complete imaging protocol is described in Figure 1.

MRI Experiments

All MR experiments were performed on an 11.7T MRI system (Bruker, Ettlingen, Germany).
DCE-MRI

A quadrature whole body coil was used for radiofrequency transmission and reception. First, anatomical images were acquired using a T_2-weighted axial turbo spin echo RARE sequence (repetition time $[TR]=2500.0$ ms; echo time $[TE]=33.0$ ms; RARE factor $=8$). Two transverse, 1-mm-thick slices were selected: one centered on the tumor and one positioned on the aorta/vena cava. For DCE-MRI, T_1-weighted gradient echo images were obtained with a fast low angle shot sequence using the following parameters: $TR/TE=15/2.074$ ms; flip angle $=40^\circ$; field of view $=37.5$ mm; matrix $=128 \times 64$; and zero-fill acceleration factor $=1.4$. A first set of 400 scans with a temporal resolution of 1.19 s was acquired (number of averages $=1$), with gadoterate meglumine administered intravenously after the twentieth scan over 2 s (0.17 and 0.26 mmol Gd/kg for MDA-MB-231 and NT2 tumors, respectively). Afterward, a slower DCE data set was acquired with a temporal resolution of 10.1 s to monitor the washout of the contrast agent (150 images; number of averages: 10). A proton density–weighted image was used to assess the offset between water and lipid peaks that was applied before the experiment. EPR spectra were recorded using a 1.1-GHz EPR spectrometer (Magnettech, Berlin, Germany) as described previously (26). Images were acquired at baseline and 3 hr after intraperitoneal administration of CA4. Briefly, the acquisition parameters were $TR/TE=4/1.2$ ms; flip angle $=5^\circ$; bandwidth $=100$ kHz; matrix $=64 \times 64$; four segments; and a total acquisition time of 1 min. 20 s. A single pulse sequence was performed to assess the offset between water and lipid peaks that was used as an imaging frequency offset. The lipid peak of interest was ~4.0 ppm. A saturation pulse was added to spoil the water signal. A series of 40 images (spaced by scan $TR=100$ ms) with a slice thickness of 2 mm were acquired with a spatial resolution of 0.344×0.344 mm.

The data analysis is provided in the Supporting Information.

MOBILE Experiments

The MOBILE experiments were performed with a 1H transmit/receive MRI CryoProbe. Parametric images of T_1 relaxation time were acquired using a segmented inversion recovery fast imaging with steady state free precession sequence in free induction decay mode. The extensive list of parameters used for this sequence has been described previously (26). Images were acquired at baseline and 3 hr after intraperitoneal administration of CA4. Briefly, the acquisition parameters were $TR/TE=4/1.2$ ms; flip angle $=5^\circ$; bandwidth $=100$ kHz; matrix $=64 \times 64$; four segments; and a total acquisition time of 1 min. 20 s. A single pulse sequence was performed to assess the offset between water and lipid peaks that was then used as an imaging frequency offset. The lipid peak of interest was ~4.0 ppm. A saturation pulse was added to spoil the water signal. A series of 40 images (spaced by scan $TR=100$ ms) with a slice thickness of 2 mm were acquired with a spatial resolution of 0.344×0.344 mm.

The data analysis is provided in the Supporting Information.

EPR Oximetry

Because EPR oximetry requires the injection of an oxygen-sensitive probe (30), 40 μL of charcoal suspension (100 mg/mL) were injected within the tumor 24 hr before the experiment. EPR spectra were recorded using a 1.1-GHz EPR spectrometer (Magnettech, Berlin, Germany) as described previously (26). According to a previously acquired calibration curve, the line width of each spectrum has been translated into an absolute pO_2 value. This quantitative technique provides a mean oxygenation level from the whole tumor.

RESULTS

Oxygenation Follow-up

Mean lipid R_1 values have been calculated within each ROI at baseline and 3 hr after CA4 administration. Figure 2A presents typical parametric maps obtained with an NT2 tumor. All NT2 tumors and four MDA-MB-231 tumors out of 5 exhibited a reduction in lipid R_1 values caused by CA4 injection. A decrease of 1% up to 7% was observed in MDA-MB-231 models, whereas a lower effect was observed in lipid R_1 values recorded in NT2 tumors in which the decrease in lipid R_1 values did not exceed 3% (Fig. 2B). On pooled tumor models, lipid R_1 values recorded at baseline were significantly lowered by CA4 administration ($P=0.0273$) (Fig. 2C). Histogram analysis showed that the distribution of lipid R_1 values shifted significantly to lower values in both models ($P=0.0024$ for the NT2 tumor model; $P<0.0001$ for the MDA-MB-231 tumor model) (Fig. 2D and 2E).

Hemodynamics Follow-up

Figure 3 presents DCE-MRI data. Representative signal enhancement time curves before and after treatment are shown for MDA (Fig. 3A) and NT2 (Fig. 3B) tumors. In both models, a rapid and large enhancement after contrast agent injection was observed before treatment. After treatment, enhancement curves displayed smaller amplitude and slower washout. For both models, the mean K_{trans} values decreased after treatment compared with pretreatment (from 0.63 ± 0.1 to 0.09 ± 0.02 min^{-1} for NT2 and from 0.61 ± 0.1 to 0.08 ± 0.02 min^{-1} for MDA-MB-231), showing a trend toward significance ($P=0.0625$ for each model). When considering pooled models, the relative change of K_{trans} observed between pretreatment and
posttreatment conditions was statistically significant ($P < 0.01$) (Fig. 3C). Typical K_{trans} maps obtained for an MDA-MB-231 tumor are presented in Figure 3D.

DISCUSSION

CA4 is the leading compound of VDAs, inhibiting tubulin assembly into microtubules in endothelial cells. As a result, a vascular collapse occurs, reducing blood flow and the supply of oxygen and nutrients (2). In the current study, we monitored the changes in hemodynamics and oxygenation in NT2 tumors and MDA-MB-231 tumors because their lipid content is sufficient to measure lipid T_1. We focused on a lipid peak of 4.0 ppm, corresponding to the protons that make up the glycerol backbone of triglycerides. Our results show that MOBILE can reflect the increase of hypoxia that occurs 3 hr after CA4 administration. Indeed, a significant decrease in recorded lipid R_1 values reflects the sensitivity of the technique to address an increase in tumor hypoxia from 1% to 7%. According to a previous publication (31), the changes in lipid R_1 values were lower in the most hypoxic tumor model. Although T_1 measurements reflect oxygenation in tissues, oxygenation in the vascular compartment can also be assessed using blood oxygen level–dependent MRI or functional MRI (32). However, McPhail et al. (33) demonstrated recently that an increase in the effective transverse relaxation rate observed 24 hr after CA4 injection was caused by a change in hemodynamics rather than a change in oxygenation. The hypoxic effect of CA4 on the tumor microenvironment was confirmed via EPR oximetry, which we used as an invasive but quantitative technique of reference. Despite a difference in the basal oxygen level within the two tumor models, both were...
influenced by CA4 administration. This finding is consistent with previous histological observations: in an immunohistological pimonidazole study from El-Emir et al. (34), an increase in hypoxic areas of 23.7% in both peripheral and central parts of the tumor was revealed 1 hr after CA4 administration. In the present study, monitoring pO2 levels with EPR 3 hr after DMSO administration did not reveal any effect on pO2 levels 3 hr after the injection. These findings suggest that the observed changes in the treated group were due to CA4 administration (see Supporting Information for details).

With regard to tumor hemodynamics, DCE-MRI also allowed the detection of early effects of acute CA4 treatment. After contrast agent injection, tumors exhibited a smaller enhancement and a slower washout after CA4 treatment compared with pretreatment signal enhancement. Pharmacokinetic modeling confirmed the hemodynamic changes induced by CA4, as reflected by the significant decrease of Ktrans observed between pre- and posttreatment conditions. Indeed, when pooling results obtained from both tumor models, Ktrans showed a reduction of 86.3% 3 hr after CA4 treatment. Ktrans represents the rate of transfer of the contrast agent from the blood to the interstitium, and its physiological interpretation depends on the balance between capillary permeability and blood flow in the tumor (35): higher permeability makes Ktrans more reflective of blood flow (flow-limited situation), whereas lower permeability makes Ktrans more reflective of vascular permeability (permeability-limited situation) (19,35,36). Although caution should be exercised in the interpretation of Ktrans, the Ktrans changes observed in our study are likely related to tumor blood flow changes. Indeed, in a previous study investigating the effects of CA4 administration in a hepatocellular carcinoma model using DCE-MRI, we showed that the magnitude of changes in Ktrans determined with gadoterate was similar to blood flow changes determined in a parallel group of mice with the perfusion marker Hoescht 33342 (36). Additionally, Maxwell et al. (22), in a study of rat P22 sarcomas, found a strong correlation between mean Ktrans values (determined with Gd-DTPA, a similar contrast agent) and tumor blood flow determined by radiolabeled iodoantipyrine uptake (determined in parallel groups of animals). Some pixels are nonenhancing in posttreatment condition, as they are no longer perfused (Fig. 3D). These pixels were set to 0.

FIG. 3. DCE-MRI experiments. A, B: Typical signal enhancement in % observed before and 3 hr after CA4 treatment in MDA-MB-231 (A) and NT2 (B) tumors. A smaller enhancement and a slower washout were observed after CA4 treatment. C: Relative changes in Ktrans induced by CA4 treatment in MDA-MB-231 and NT2 tumors (n = 5/tumor model). There was a significant decrease of Ktrans in pooled data from both tumor models. **P < 0.01. D: Typical Ktrans obtained at baseline and 3 hr after treatment. After treatment, Ktrans values decreased and a high proportion of pixels were nonperfused (Ktrans < 0, gray region).
for the calculation of mean values to avoid outliers affecting the mean (36). Other types of analysis (eg, fraction of enhancing voxels) could also be useful to detect the early effects of CA4 treatment.

Histological analysis supported our MRI findings (see Supporting Information). Although no quantitative assessment was achieved, a reduction of perfused vessels was clearly observed in treated tumors in both models compared with a separate group of untreated tumors. Zhao et al. (37) made the same observation in MDA-MB-231 tumors 2 hr after CA4P treatment.

VDAs are cytostatic drugs that induce no reduction size immediately after administration. Cytotoxic drugs are currently used in combination with VDAs to target the residual cells of the viable rim. Moreover, because tumor size is not a good indicator of early treatment response, functional imaging is required to assess early changes in tumor microenvironment (38) that could influence the timing of cotreatment administration. For example, if CA4 administration is to be combined with x-ray therapy, it is important to administer it during or after the irradiation in order to strengthen the damages induced by radiotherapy and to avoid radioresistance that could be induced by a CA4 administration before radiotherapy (15). On the contrary, a recent study involving a radiopharmaceutical compound highlighted the importance of administering CA4 24 hr before the injection of 131I-hypericin, a necrosis avid contrast agent that interacts with tubulin: preclinical tumor imaging and biological assessment. Integr Biol 2011;3:375–387.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Figure S1. Histological results. Representative pictures of tumor sections from MDA-MB-231 (A-B) and NT2 tumors (C-D) stained with CD31 antibody for endothelial cells (red). The perfusion marker Hoechst 33342 (blue) was injected 1 min before sacrifice. The CA4 effects were clearly visualized by a less presence of perfused vessels in treated tumors (B-D) compared to untreated tumors (A-C).