The version you’re consulting is not final. This course description may change. The final version will be published on 1st June.
5.00 credits
30.0 h + 30.0 h
Q2
Language
English
> French-friendly
> French-friendly
Prerequisites
Basic undergraduate background in mathematics and notions of signals and systems (e.g., as taught in LEPL1106).
Main themes
This course provides a comprehensive introduction to the modeling, analysis, and design of linear control systems. It begins by presenting techniques for modeling physical systems using differential equations and transfer functions, with examples drawn from robotics, mechanical, electrical, biological, and biomedical engineering. The course then explores methods for analyzing these models, focusing on key system properties such as stability, steady-state errors, disturbance rejection, and the role of feedback in ensuring robustness. One part of the course is devoted to classical control design techniques using frequency-domain tools — such as PID tuning and frequency-domain methods — as well as robustness analysis. Another part focuses on system analysis and control synthesis using state-space methods, offering a modern framework that supports the study and design of controllers via state feedback. Particular emphasis is placed on the use of software tools for controller design
Learning outcomes
At the end of this learning unit, the student is able to : | |
|
|
Bibliography
Slides, notes, and laboratory manuals provided by the instructor
Suggested readings from the referenced books :
Suggested readings from the referenced books :
- Khalil, H. K. (2023). Control Systems: An Introduction. Michigan Publishing.
- J. P. Hespanha, "Linear systems theory," Princeton University Press, 2018 (available in the library)
- G. F. Franklin, J. D. Powell, E. Emami-Naeini, "Feedback control of dynamic systems," Prentice Hall, 2019 (available in the library)
Faculty or entity
Programmes / formations proposant cette unité d'enseignement (UE)
Title of the programme
Sigle
Credits
Prerequisites
Learning outcomes
Bachelor in Engineering
Master [120] in Chemical and Materials Engineering
Master [120] in Mechanical Engineering
Master [120] in Electrical Engineering
Master [120] in Electro-mechanical Engineering
Master [120] in Energy Engineering